Faculty Publications

Room Temperature Formation of Carbon Onions via Ultrasonic Agitation of MoS2 in Isopropanol

Document Type

Article

Keywords

Carbon Onions; EDS; Fullerenes; Layered Materials; MoS2; STM; TEM; Ultrasonic Agitation

Journal/Book/Conference Title

Journal of Nanoscience and Nanotechnology

Volume

18

Issue

5

First Page

3171

Last Page

3175

Abstract

Ultrasonic agitation is a proven method for breaking down layered materials such as MoS2 into single or few layer nanoparticles. In this experiment, MoS2 powder is sonicated in isopropanol for an extended period of time in an attempt to create particles of the smallest possible size. As expected, the process yielded a significant quantity of nanoscale MoS2 in the form of finite layer sheets with lateral dimensions as small as a few tens of nanometers. Although no evidence was found to indicate a larger the longer sonication times resulted in a significant increase in yield of single layer MoS2, the increased sonication did result in the formation of several types of carbon allotropes in addition to the sheets of MoS2. These carbon structures appear to originate from the breakdown of the isopropanol and consist of finite layer graphite platelets as well as a large number of multi-walled fullerenes, also known as carbon onions. Both the finite layer graphite and MoS2 nanoplatelets were both found to be heavily decorated with carbon onions. However, isolated clusters of carbon onions could also be found. Our results show that liquid exfoliation of MoS2 is not only useful for forming finite layer MoS2, but also creating carbon onions at room temperature as well.

Department

Department of Physics

Original Publication Date

5-1-2018

DOI of published version

10.1166/jnn.2018.14707

Share

COinS