Faculty Publications

Title

Self-assembled Ag(111) nanostructures induced by Fermi surface nesting

Document Type

Article

Journal/Book/Conference Title

Physical Review B

Volume

100

Issue

23

Abstract

Scanning tunneling microscopy measurements on Ag(111)/MoS2 reveal atomically flat preferred, or "magic," heights occurring at 6, 10, and 14 atomic layers. These results are consistent with Ag growth on a variety of semiconducting substrates and correlate with electronic energy savings in electronic structure calculations of freestanding Ag(111) films. Thus, under certain conditions, Ag will spontaneously form quantized structures independent of the substrate. To explain this, we have found Fermi surface nesting vectors in the bulk Ag band structure which account for these results and the fact Ag that is gapped along the surface normal. This model extends to a range of metallic systems which exhibit electronic confinement, epitaxial growth, and minimal strain. As with Au/MoS2, the Ag/MoS2 system exhibits this behavior at unusually high temperatures so that these principles might be used for control over device features at the nanometer scale under standard fabrication conditions.

Original Publication Date

12-24-2019

DOI of published version

10.1103/PhysRevB.100.235447

Repository

UNI ScholarWorks, Rod Library, University of Northern Iowa

Language

en

Share

COinS