Faculty Publications
Self-Assembled Ag(111) Nanostructures Induced By Fermi Surface Nesting
Document Type
Article
Journal/Book/Conference Title
Physical Review B
Volume
100
Issue
23
Abstract
Scanning tunneling microscopy measurements on Ag(111)/MoS2 reveal atomically flat preferred, or "magic," heights occurring at 6, 10, and 14 atomic layers. These results are consistent with Ag growth on a variety of semiconducting substrates and correlate with electronic energy savings in electronic structure calculations of freestanding Ag(111) films. Thus, under certain conditions, Ag will spontaneously form quantized structures independent of the substrate. To explain this, we have found Fermi surface nesting vectors in the bulk Ag band structure which account for these results and the fact Ag that is gapped along the surface normal. This model extends to a range of metallic systems which exhibit electronic confinement, epitaxial growth, and minimal strain. As with Au/MoS2, the Ag/MoS2 system exhibits this behavior at unusually high temperatures so that these principles might be used for control over device features at the nanometer scale under standard fabrication conditions.
Department
Department of Physics
Original Publication Date
12-24-2019
DOI of published version
10.1103/PhysRevB.100.235447
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Language
en
Recommended Citation
Kidd, Timothy E.; O'leary, Evan; Anderson, Aaron; Scott, Skylar; and Stollenwerk, Andrew J., "Self-Assembled Ag(111) Nanostructures Induced By Fermi Surface Nesting" (2019). Faculty Publications. 430.
https://scholarworks.uni.edu/facpub/430