Faculty Publications
Strong Orbit Equivalence And Residuality
Document Type
Article
Keywords
Ergodic theory, Topological dynamics
Journal/Book/Conference Title
Topological Methods in Nonlinear Analysis
Volume
39
Issue
2
First Page
285
Last Page
310
Abstract
We consider a class of minimal Cantor systems that up to conjugacy contains all systems strong orbit equivalent to a given system. We define a metric on this strong orbit equivalence class and prove several properties about the resulting metric space including that the space is complete and separable but not compact. If the strong orbit equivalence class contains a finite rank system, we show that the set of finite rank systems is residual in the metric space. The final result shown is that the set of systems with zero entropy is residual in every strong orbit equivalence class of this type. © 2012 Juliusz Schauder University Centre for Nonlinear Studies.
Original Publication Date
7-16-2012
Recommended Citation
Werner, Brett M., "Strong Orbit Equivalence And Residuality" (2012). Faculty Publications. 1769.
https://scholarworks.uni.edu/facpub/1769