Home > Iowa Academy of Science > Journals & Newsletters > Proceedings of the Iowa Academy of Science > Volume 68 (1961) > Annual Issue
Document Type
Research
Abstract
For m = 1,2,... the following indefinite integrals are evaluated
⌠cot x sin 2mx dx, ⌠tan x sin 2mx dx,
⌠cot 2x sin 2mx dx, ⌠2 csc 2x sin 2mx dx,
⌠cot x sin 2mx ln(sin x/sin a)dx, ⌠tan x sin 2mx ln(sin x/sin a)dx,
2⌠cot 2x sin 2mx ln (sin x/ sin a) dx, 2 ⌠csc 2x sin 2mx ln (sin x/ sin a) dx.
Also, formulas are given for the last four expressions where f(x) replaces ln(sin x/sin a). Further, procedures for evaluating the above expressions are outlined when cos 2mx replaces sin 2mx. The need of the integrals arose in connection with Fourier series where singularities in the function to be developed had been removed.
Publication Date
1961
Journal Title
Proceedings of the Iowa Academy of Science
Volume
68
Issue
1
First Page
416
Last Page
426
Copyright
©1961 Iowa Academy of Science, Inc.
Language
en
File Format
application/pdf
Recommended Citation
Kirkham, Don
(1961)
"Evaluation of ʃcot x sin 2mx In(sin x/sina)dx, Etc.,"
Proceedings of the Iowa Academy of Science, 68(1), 416-426.
Available at:
https://scholarworks.uni.edu/pias/vol68/iss1/58