Home > Iowa Academy of Science > Journals & Newsletters > Proceedings of the Iowa Academy of Science > Volume 67 (1960) > Annual Issue
Document Type
Research
Abstract
This paper gives a proof that the polynomial function Qn (s) = ∫so t(t-1) (t-2) • • • (t-n)dt does not change sign on the interval (O,n). Heretofore it was generally believed that Qn (s) changed sign on the interval (O,n) when n was an odd integer. The technique of proof is to show that when n is odd, Qn (s) has an upper bound Qn (n-1) for (n-1)/2 ≤ s ≤ n which is shown to be negative. This result simplifies the treatment of the error terms in certain numerical integration formulas which involve divided differences. The simplified treatment is given here.
Publication Date
1960
Journal Title
Proceedings of the Iowa Academy of Science
Volume
67
Issue
1
First Page
369
Last Page
381
Copyright
©1960 Iowa Academy of Science, Inc.
Language
en
File Format
application/pdf
Recommended Citation
Lambert, Robert J.
(1960)
"Error Terms of Numerical Integration Formulas,"
Proceedings of the Iowa Academy of Science, 67(1), 369-381.
Available at:
https://scholarworks.uni.edu/pias/vol67/iss1/48