Home > Iowa Academy of Science > Journals & Newsletters > Proceedings of the Iowa Academy of Science > Volume 60 (1953) > Annual Issue
Document Type
Research
Abstract
In a recent textbook (1) on the theory of numbers Professor B. M. Stewart suggests the usefulness of the algebra of matrices over a finite field for encoding messages. The procedure is as follows. First the message is written as a normal message. Then each letter of the alphabet and each punctuation mark is associated with an element of a finite field F. Then the message is broken up into blocks, each block being a square matrix, and each matrix is premultiplied (or postmultiplied) by a non-singular scrambling matrix C whose elements are in the field, F. Each resulting matrix is translated into its alphabetical and punctuated form and the resulting code message is transmitted. On the receiving end, the code message is translated into a collection of matrices again and the matrices are premultiplied (or postmultipled) by the inverse of C. The resulting matrices are translated into blocks of punctuated and spaced words forming the message. Of course, C must be nonsingular and C-1 must be known to the receiver.
Publication Date
1953
Journal Title
Proceedings of the Iowa Academy of Science
Volume
60
Issue
1
First Page
489
Last Page
491
Copyright
©1953 Iowa Academy of Science, Inc.
Language
en
File Format
application/pdf
Recommended Citation
Goheen, Harry
(1953)
"A Cryptographic Machine,"
Proceedings of the Iowa Academy of Science, 60(1), 489-491.
Available at:
https://scholarworks.uni.edu/pias/vol60/iss1/62