Faculty Publications
V2O5: A 2D Van Der Waals Oxide With Strong In-Plane Electrical And Optical Anisotropy
Document Type
Article
Keywords
2D material, anisotropy, Raman, transport, vanadium pentoxide
Journal/Book/Conference Title
ACS Applied Materials and Interfaces
Volume
9
Issue
28
First Page
23949
Last Page
23956
Abstract
V2O5 with a layered van der Waals (vdW) structure has been widely studied because of the material's potential in applications such as battery electrodes. In this work, microelectronic devices were fabricated to study the electrical and optical properties of mechanically exfoliated multilayered V2O5 flakes. Raman spectroscopy was used to determine the crystal structure axes of the nanoflakes and revealed that the intensities of the Raman modes depend strongly on the relative orientation between the crystal axes and the polarization directions of incident/scattered light. Angular dependence of four-probe resistance measured in the van der Pauw (vdP) configuration revealed an in-plane anisotropic resistance ratio of ∼100 between the a and b crystal axes, the largest in-plane transport anisotropy effect experimentally reported for two-dimensional (2D) materials to date. This very large resistance anisotropic ratio is explained by the nonuniform current flow in the vdP measurement and an intrinsic mobility anisotropy ratio of 10 between the a and b crystal axes. Room-temperature electron Hall mobility up to 7 cm2/(V s) along the high-mobility direction was obtained. This work demonstrates V2O5 as a layered 2D vdW oxide material with strongly anisotropic optical and electronic properties for novel applications.
Department
Department of Physics
Original Publication Date
7-19-2017
DOI of published version
10.1021/acsami.7b05377
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Language
en
Recommended Citation
Sucharitakul, Sukrit; Ye, Gaihua; Lambrecht, Walter R.L.; Bhandari, Churna; Gross, Axel; He, Rui; Poelman, Hilde; and Gao, Xuan P.A., "V2O5: A 2D Van Der Waals Oxide With Strong In-Plane Electrical And Optical Anisotropy" (2017). Faculty Publications. 847.
https://scholarworks.uni.edu/facpub/847