Faculty Publications

Multiple Roles for Lignin Peroxidases in the Biodegradation of Organic Pollutants

Document Type

Conference

Journal/Book/Conference Title

Annual Conference on Hazardous Waste Remediation

Abstract

The wood-rotting fungus Phanerochaete chrysosporium is able to degrade a wide variety of environmentally-persistent organic pollutants to carbon dioxide. The unique biodegradative abilities of this fungus are due, in part, to lignin peroxidases, oxidative enzymes that are secreted in response to nutrient deprivation. Lignin peroxidases catalyze the initial oxidation of many of the organic pollutants that are degraded by this fungus. They also mediate the initial oxidation of N,N,N{prime},N{prime},N{double_prime},N{double_prime}-hexamethylpararosaniline, several azo dyes and certain polycyclic aromatic hydrocarbons. Lignin peroxidases also mediate oxidative dechlorination. For example, lignin peroxidases oxidize pentachlorophenol to 2,3,5,6-tetrachloro-2,5-cyclohexadiene-1,4-dione. Similarly, these enzymes mediate oxidative oligomerization of 4-chloroaniline, resulting in production of several dimers, trimers and tetramers and net dechlorination of the aromatic ring. Interestingly, many, but not all, of the reactions mediated by lignin peroxidases are also mediated by other plant, fungal and oxidation of an intermediate. In the case of phenanthrene degradation, lignin peroxidases do not mediate the initial oxidation. However, these enzymes do mediate the oxidation of 9-phenanthrol, forming phenanthrene-9,10-dione.

Original Publication Date

12-31-1994

Share

COinS