Faculty Publications
Document Type
Article
Publication Version
Published Version
Journal/Book/Conference Title
Photogrammetric Engineering & Remote Sensing
Volume
72
Issue
11
First Page
1275
Last Page
1286
Abstract
In remote sensing studies of land surface temperatures (LST), thematic land-use and land-cover (LULC) data are frequently-employed for simple correlation analyses between LULC types and their thermal signatures. Development of quantitative surface descriptors could improve our capabilities for modeling urban thermal landscapes and advance urban climate research. This study developed an analytical procedure based upon a spectral unmixing model for characterizing and quantifying the urban landscape in Indianapolis, Indiana. A Landsat Enhanced Thematic Mapper Plus image of the study area, acquired on 22 June 2002, was spectrally unmixed into four fraction endmembers, namely, green vegetation, soil, high and low albedo. Impervious surface was then computed from the high and low albedo images. A hybrid classification procedure was developed to classify the fraction images into seven land-use and land-cover classes. Next, pixel-based LST measurements were related to urban surface biophysical descriptors derived from spectral mixture analysis (SMA). Correlation analyses were conducted to investigate land-cover based relationships between LST and impervious surface and green vegetation fractions for an analysis of the causes of LST variations. Results indicate that fraction images derived from SMA were effective for quantifying the urban morphology and for providing reliable measurements of biophysical variables such as vegetation abundance, soil, and impervious surface. An examination of LST variations within census block groups and their relationships with the compositions of LULC types, biophysical descriptors, and other relevant spatial data shows that LST possessed a weaker relation with the LULC compositions than with other variables (including urban biophysical descriptors, remote sensing biophysical variables, CIS-based impervious surface variables, and population density). Further research should be directed to refine spectral mixture modeling. The use of multi-temporal remote sensing data for urban time-space modeling and comparison of urban morphology in different geographical settings are also feasible.
Department
Department of Geography
Original Publication Date
11-1-2006
Object Description
1 PDF File
DOI of published version
10.14358/PERS.72.11.1275
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Copyright
©2006 American Society for Photogrammetry and Remote Sensing
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Language
en
File Format
application/pdf
Recommended Citation
Liang, Bingqing; Weng, Qihao; and Lu, Dengsheng, "Urban Surface Biophysical Descriptors and Land Surface Temperature Variations" (2006). Faculty Publications. 6493.
https://scholarworks.uni.edu/facpub/6493
Comments
First published in Photogrammetric Engineering & Remote Sensing, n11 published by American Society for Photogrammetry and Remote Sensing. DOI: https://doi.org/10.14358/PERS.72.11.1275