Faculty Publications
Document Type
Article
Publication Version
Published Version
Keywords
electric fleet, electric vehicles, EVSE, optimization, PV, smart charging
Journal/Book/Conference Title
IEEE Access
Volume
10
Abstract
As the transition to electric mobility is expanding at a rapid pace, operationally feasible and economically viable charging infrastructure is needed to support electrified fleets. This paper presents a co-simulation of optimal electric vehicle supply equipment (EVSE) and techno-economic system design models to investigate the behaviors of various EVSE configurations from cost and technical aspects. While the system design optimization is performed for a grid-tied PV system, the optimal EVSE model considers all EVSE options which are currently installed at workplaces. To investigate the impact of EV utilization rate, three fleet sizes are considered that are generated based on real EV fleet data. Furthermore, the impact of electricity rates is also explored through an innovative EV-specific (BEV) rate and a conventional time-of-use (ToU) tariff. It is shown that investing in grid-tied renewable energy technologies for workplace charging infrastructure supply can lower charging costs. Cost savings differ from EVSE types and fleet size under the BEV rate while EVSEs display similar cost-saving behavior under the ToU tariff irrespective of fleet size. DC Fast Charging (DCFC) EVSE is found to be highly sensitive to fleet size as compared to AC EVSEs. Moreover, DCFCs make better use of the BEV rate which makes their economics competitive as much as AC EVSEs. Finally, it is found that the fleet size and AC EVSE types have a minor effect on the use of renewable energy in contrast to the DCFC case.
Department
Department of Applied Engineering and Technical Management
Original Publication Date
1-1-2022
Object Description
1 PDF File
DOI of published version
10.1109/ACCESS.2022.3150359
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Copyright
©2022 The Authors. Creative Commons Attribution License.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Language
en
File Format
application/pdf
Recommended Citation
Erdogan, Nuh; Kucuksari, Sadik; and Cali, Umit, "Co-Simulation Of Optimal Evse And Techno-Economic System Design Models For Electrified Fleets" (2022). Faculty Publications. 5215.
https://scholarworks.uni.edu/facpub/5215
Comments
First published in IEEE Access, v10 (2022) published by IEEE Xplore. DOI: https://doi.org/10.1109/ACCESS.2022.3150359