Faculty Publications
Exterior Derivatives And Laplacians On Digraphs
Document Type
Article
Journal/Book/Conference Title
Australasian Journal of Combinatorics
Volume
29
First Page
85
Last Page
94
Abstract
Given a digraph G = (V, E) with the set of vertices V and the set of edges E, let d: F → Ω1 be the exterior derivative map from the space of complex-valued functions on V to the complex vector space spanned by E. We introduce the Laplacian Δ: F → F and the label difference map d̂: F → (Ω1)* of F into the dual space (Ω1)* of Ω1 and establish their connections with d. In particular, we prove that, given elements φ and ψ of F, the image of the conjugate dψ of dψ under ďφ is equal to the value of the Hermitian product between Δφ and ψ and that dφ is a flow in G associated to Δφ.
Department
Department of Mathematics
Original Publication Date
12-1-2004
Recommended Citation
Lee, Min Ho, "Exterior Derivatives And Laplacians On Digraphs" (2004). Faculty Publications. 3049.
https://scholarworks.uni.edu/facpub/3049