Faculty Publications
Phase Transitions In Hexane Monolayers Physisorbed Onto Graphite
Document Type
Article
Journal/Book/Conference Title
Physical Review B - Condensed Matter and Materials Physics
Volume
71
Issue
15
Abstract
We report the results of molecular dynamics simulations of a complete monolayer of hexane physisorbed onto the basal plane of graphite. At low temperatures the system forms a herringbone solid. With increasing temperature, a solid-to-nematic liquid-crystal transition takes place at T1 =138±2 K followed by another transition at T2 =176±3 K into an isotropic fluid. We characterize the different phases by calculating various order parameters, coordinate distributions, energetics, spreading pressure, and correlation functions, most of which are in reasonable agreement with available experimental evidence. In addition, we perform simulations where the Lennard-Jones interaction strength, corrugation potential strength, and dihedral rigidity are varied in order to better characterize the nature of the two transitions. We find that both phase transitions are facilitated by a "footprint reduction" of the molecules via tilting and to a lesser degree via creation of gauche defects in the molecules. © 2005 The American Physical Society.
Department
Department of Physics
Original Publication Date
12-14-2005
DOI of published version
10.1103/PhysRevB.71.155427
Recommended Citation
Roth, M. W.; Pint, C. L.; and Wexler, Carlos, "Phase Transitions In Hexane Monolayers Physisorbed Onto Graphite" (2005). Faculty Publications. 2875.
https://scholarworks.uni.edu/facpub/2875