Faculty Publications
Simulated Dynamics Of Ne@C60 Aggregates Beyond Dissociation
Document Type
Article
Keywords
Encapsulation, Endohedral fullerenes, Molecular dynamics, Noble gases
Journal/Book/Conference Title
Molecular Simulation
Volume
33
Issue
11
First Page
945
Last Page
952
Abstract
Molecular dynamics (MD) computer simulations are utilized to better understand the dynamics of small (N=5) endohedral Ne@C60 aggregates. Multiple runs at various temperatures are used to increase the reliability of our statistics. The aggregate holds together until somewhere between T=1150 and 1200K, where it dissociates, showing no intermediate sign of melting or fullerene disintegration. When the temperature is increased to around T=4000K, the encapsulated neon atoms begin to leave the aggregate, with the fullerene molecules still remaining intact. At temperatures near T=4400K, thermal disintegration of the fullerenes preempts the aggregate dissociation. Above this temperature neon atoms are more quickly released and the fullerenes form a larger connected structure, with bonding taking place in atom pairs from different original fullerene molecules. Escape constants and half lives are calculated for the temperature range 4000KT5000K. The agreements and disagreements of results of this work with experiments suggest that classical MD simulations are useful in describing fullerene systems at low temperatures and near disintegration, but require development of new techniques before it is possible to accurately model windowing at temperatures below T=3000K.
Department
Department of Physics
Original Publication Date
1-1-2007
DOI of published version
10.1080/08927020701435803
Recommended Citation
Tilton, P.; Suchy, B.; Balasubramanya, M. K.; and Roth, M. W., "Simulated Dynamics Of Ne@C60 Aggregates Beyond Dissociation" (2007). Faculty Publications. 2697.
https://scholarworks.uni.edu/facpub/2697