Faculty Publications
Characterization Of Gene Repression By Designed Transcription Activator-Like Effector Dimer Proteins
Document Type
Article
Journal/Book/Conference Title
Biophysical Journal
Volume
119
Issue
10
First Page
2045
Last Page
2054
Abstract
Gene regulation by control of transcription initiation is a fundamental property of living cells. Much of our understanding of gene repression originated from studies of the Escherichia coli lac operon switch, in which DNA looping plays an essential role. To validate and generalize principles from lac for practical applications, we previously described artificial DNA looping driven by designed transcription activator-like effector dimer (TALED) proteins. Because TALE monomers bind the idealized symmetrical lac operator sequence in two orientations, our prior studies detected repression due to multiple DNA loops. We now quantitatively characterize gene repression in living E. coli by a collection of individual TALED loops with systematic loop length variation. Fitting of a thermodynamic model allows unequivocal demonstration of looping and comparison of the engineered TALED repression system with the natural lac repressor system.
Department
Department of Chemistry and Biochemistry
Original Publication Date
11-17-2020
DOI of published version
10.1016/j.bpj.2020.10.007
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Language
en
Recommended Citation
Becker, Nicole A.; Peters, Justin P.; Schwab, Tanya L.; Phillips, William J.; Wallace, Jordan P.; Clark, Karl J.; and Maher, L. James, "Characterization Of Gene Repression By Designed Transcription Activator-Like Effector Dimer Proteins" (2020). Faculty Publications. 237.
https://scholarworks.uni.edu/facpub/237