Faculty Publications
Optimal Excess-Of-Loss Reinsurance Under Borrowing Constraints
Document Type
Article
Keywords
borrowing constraints, excess-of-loss reinsurance, HJB equation, Ruin probability, stochastic control
Journal/Book/Conference Title
Risk and Decision Analysis
Volume
2
Issue
2
First Page
103
Last Page
123
Abstract
In this paper, we study an optimal dynamic control problem of an insurance company with excess-of-loss reinsurance and investment. Three practical borrowing constraints are studied individually: (B1) borrowed dollar amount is no more than a borrowing limit K; (B2) borrowed proportion to surplus level is no more than k; and (B3) borrowing rate is higher than risk free rate of return (saving rate). The optimal criterion is to minimize probability of ruin. Classical stochastic control theory is applied to solve the problem. Under each of the constraints, minimal ruin probability functions are obtained in closed form by solving Hamilton-Jacobi-Bellman (HJB) equations. Their associated optimal reinsurance-investment control policies are found as well. © 2010/2011 - IOS Press and the authors. All rights reserved.
Department
Department of Mathematics
Original Publication Date
12-1-2010
DOI of published version
10.3233/RDA-2011-0029
Recommended Citation
Luo, Shangzhen and Taksar, Michael, "Optimal Excess-Of-Loss Reinsurance Under Borrowing Constraints" (2010). Faculty Publications. 2033.
https://scholarworks.uni.edu/facpub/2033