Faculty Publications

Finite-Resolution Digital Receiver For High Rate Ultra-Wideband Weighted-Transmitted Reference System

Document Type

Conference

Keywords

Digital receiver, finite-resolution ADC, inter-pulse interference, inter-symbol interference, sampling rate, ultra-wideband weighted-transmitted reference

Journal/Book/Conference Title

Proceedings - IEEE International Conference on Ultra-Wideband

First Page

200

Last Page

204

Abstract

Having adequate robustness to variations of both weight coefficient and integration interval, the weighted-transmitted reference (WTR) system can achieve a superior performance and support high data rate ultra-wideband (UWB) communications as well. To benefit from these excellent advantages without using ultra-wideband analog delay lines, in this paper, a finite-resolution digital receiver is proposed. The performance of the proposed receiver is evaluated at a data rate of 114Mbps averaged over 100 realizations of IEEE 802.15.3a channel model 1 (CM1) for different quantization levels of finite-resolution analog-to-digital converters (ADCs) operating at Nyquist rate, taking into account noise, inter-path/pulse interference (IPaI/IPI), and inter-symbol interference (ISI). The effects of sampling rates, number of reference pulses, and the ADC threshold(s), weight coefficient, and summation interval on the receiver performance are also investigated. The evaluation results show that the proposed receivers using finite-resolution ADCs only suffer a performance degradation of several dB as compared to the full-resolution ADC and analog receivers. Therefore, employing finite-resolution ADCs could be a promising approach to implement the WTR receivers without using ultra-wideband analog delay lines. © 2011 IEEE.

Department

Department of Industrial Technology

Original Publication Date

12-5-2011

DOI of published version

10.1109/ICUWB.2011.6058827

Share

COinS