Faculty Publications
Characterization Of Ground-Based Atmospheric Pollution And Meteorology Sampling Stations During The Lake Michigan Ozone Study 2017
Document Type
Article
Journal/Book/Conference Title
Journal of the Air and Waste Management Association
Volume
71
Issue
7
First Page
866
Last Page
889
Abstract
The Lake Michigan Ozone Study 2017 (LMOS 2017) in May and June 2017 enabled study of transport, emissions, and chemical evolution related to ozone air pollution in the Lake Michigan airshed. Two highly instrumented ground sampling sites were part of a wider sampling strategy of aircraft, shipborne, and ground-based mobile sampling. The Zion, Illinois site (on the coast of Lake Michigan, 67 km north of Chicago) was selected to sample higher NOx air parcels having undergone less photochemical processing. The Sheboygan, Wisconsin site (on the coast of Lake Michigan, 211 km north of Chicago) was selected due to its favorable location for the observation of photochemically aged plumes during ozone episodes involving southerly winds with lake breeze. The study encountered elevated ozone during three multiday periods. Daytime ozone episode concentrations at Zion were 60 ppb for ozone, 3.8 ppb for NOx, 1.2 ppb for nitric acid, and 8.2 μg m-3 for fine particulate matter. At Sheboygan daytime, ozone episode concentrations were 60 ppb for ozone, 2.6 ppb for NOx, and 3.0 ppb for NOy. To facilitate informed use of the LMOS 2017 data repository, we here present comprehensive site description, including airmass influences during high ozone periods of the campaign, overview of meteorological and pollutant measurements, analysis of continuous emission monitor data from nearby large point sources, and characterization of local source impacts from vehicle traffic, large point sources, and rail. Consistent with previous field campaigns and the conceptual model of ozone episodes in the area, trajectories from the southwest, south, and lake breeze trajectories (south or southeast) were overrepresented during pollution episodes. Local source impacts from vehicle traffic, large point sources, and rail were assessed and found to represent less than about 15% of typical concentrations measured. Implications for model-observation comparison and design of future field campaigns are discussed. Implications: The Lake Michigan Ozone Study 2017 (LMOS 2017) was conducted along the western shore of Lake Michigan, and involved two well-instrumented coastal ground sites (Zion, IL, and Sheboygan, WI). LMOS 2017 data are publicly available, and this paper provides detailed site characterization and measurement summary to enable informed use of repository data. Minor local source impacts were detected but were largely confined to nighttime conditions of less interest for ozone episode analysis and modeling. The role of these sites in the wider field campaign and their detailed description facilitates future campaign planning, informed data repository use, and model-observation comparison.
Department
Department of Earth and Environmental Sciences
Original Publication Date
1-1-2021
DOI of published version
10.1080/10962247.2021.1900000
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Language
en
Recommended Citation
Doak, Austin G.; Christiansen, Megan B.; Alwe, Hariprasad D.; Bertram, Timothy H.; Carmichael, Gregory; Cleary, Patricia; Czarnetzki, Alan C.; Dickens, Angela F.; Janssen, Mark; Kenski, Donna; Millet, Dylan B.; Novak, Gordon A.; Pierce, Bradley R.; Stone, Elizabeth A.; Long, Russell W.; Vermeuel, Michael P.; Wagner, Timothy J.; Valin, Lukas; and Stanier, Charles O., "Characterization Of Ground-Based Atmospheric Pollution And Meteorology Sampling Stations During The Lake Michigan Ozone Study 2017" (2021). Faculty Publications. 179.
https://scholarworks.uni.edu/facpub/179