Faculty Publications
Minimal Cost Of A Brownian Risk Without Ruin
Document Type
Article
Keywords
Capital injection, Diffusion approximation, Quasi-variational inequalities, Regular-impulse control, Reinsurance
Journal/Book/Conference Title
Insurance: Mathematics and Economics
Volume
51
Issue
3
First Page
685
Last Page
693
Abstract
In this paper, we study an optimal stochastic control problem for an insurance company whose surplus process is modeled by a Brownian motion with drift (the diffusion approximation model). The company can purchase reinsurance to lower its risk and receive cash injections at discrete times to avoid ruin. Proportional reinsurance and excess-of-loss reinsurance are considered. The objective is to find an optimal reinsurance and cash injection strategy that minimizes the total cost to keep the surplus process non-negative (without ruin). Here the cost function is defined as the total discounted value of the injections. The minimal cost function is found explicitly by solving the according quasi-variational inequalities (QVIs). Its associated optimal reinsurance-injection control policy is also found. © 2012 Elsevier B.V.
Department
Department of Mathematics
Original Publication Date
10-18-2012
DOI of published version
10.1016/j.insmatheco.2012.09.006
Recommended Citation
Luo, Shangzhen and Taksar, Michael, "Minimal Cost Of A Brownian Risk Without Ruin" (2012). Faculty Publications. 1734.
https://scholarworks.uni.edu/facpub/1734