Faculty Publications
Nonlinear Signal Processing Technologies For Energy Detection Based Impulse Radio UWB Transceivers
Document Type
Conference
Keywords
Energy detection, narrowband interference, nonlinear signal processing, square law device, Teager-Kaiser operator, ultra-wideband
Journal/Book/Conference Title
Proceedings - IEEE International Conference on Ultra-Wideband
First Page
202
Last Page
206
Abstract
Presently most signal processing technologies employed in impulse radio UWB transceivers are straightforward derivatives of those designed for conventional wireless transceivers. They appear not to take full advantage of some special features offered by the impulse radio UWB transceivers, such as ultra-wide bandwidth and very short duration pulses. To move beyond this shortcoming, in this paper, we have reviewed our recent innovations in using nonlinear signal processing technologies, in particular, the Teager-Kaiser operator and the square law device, in energy detection based UWB transceivers. It is found that nonlinear signal processing technologies can mitigate not only the destructive effects caused a narrowband interference but also those caused wideband noises, and hence can significantly improve the bit-error-rate performance of energy detection based UWB transceivers no matter when a narrowband interference is present or not. In summary, use of nonlinear signal processing technologies is a groundbreaking innovation and presents a potentially new horizon for research and development of UWB systems. © 2012 IEEE.
Department
Department of Technology
Original Publication Date
12-14-2012
DOI of published version
10.1109/ICUWB.2012.6340460
Recommended Citation
Nie, Hong; Chen, Zhizhang; and Xu, Zhimeng, "Nonlinear Signal Processing Technologies For Energy Detection Based Impulse Radio UWB Transceivers" (2012). Faculty Publications. 1706.
https://scholarworks.uni.edu/facpub/1706