Faculty Publications
An Optimal Investment Model With Markov-Driven Volatilities
Document Type
Article
Keywords
Dynamic programming, Portfolio optimization, Stochastic control, Utility functions
Journal/Book/Conference Title
Quantitative Finance
Volume
14
Issue
9
First Page
1651
Last Page
1661
Abstract
We consider a multi-stock market model. The processes of stock prices are governed by stochastic differential equations with stock return rates and volatilities driven by a finite-state Markov process. Each volatility is also disturbed by a Brownian motion; more exactly, it follows a Markov-driven Ornstein-Uhlenbeck process. Investors can observe the stock prices only. Both the underlying Brownian motion and the Markov process are unobservable. We study a discretized version, which is a discrete-time hidden Markov process. The objective is to control trading at each time step to maximize an expected utility function of terminal wealth. Exploiting dynamic programming techniques, we derive an approximate optimal trading strategy that results in an expected utility function close to the optimal value function. Necessary filtering and forecasting techniques are developed to compute the near-optimal trading strategy. © 2014 Copyright Taylor & Francis Group, LLC.
Department
Department of Mathematics
Original Publication Date
1-1-2014
DOI of published version
10.1080/14697688.2011.596487
Recommended Citation
Luo, Shangzhen and Zeng, Xudong, "An Optimal Investment Model With Markov-Driven Volatilities" (2014). Faculty Publications. 1462.
https://scholarworks.uni.edu/facpub/1462