Faculty Publications
Microtubule Orientation And Spacing Within Bundles Is Critical For Long-Range Kinesin-1 Motility
Document Type
Article
Keywords
Intracellular transport, Long-range transport, Motor protein, Network organization, Traffic
Journal/Book/Conference Title
Cytoskeleton
Volume
71
Issue
11
First Page
595
Last Page
610
Abstract
Cells rely on active transport to quickly organize cellular cargo. How cells regulate transport is not fully understood. One proposed mechanism is that motor activity could be altered through the architecture of the cytoskeleton. This mechanism is supported by the fact that the cytoskeletal network is tightly regulated in cells and filament polarity within networks dictates motor directionality. For instance, axons contain bundles of parallel microtubules and all cargos with the same motor species will move in the same direction. It is not clear how other types of networks, such as antiparallel bundles in dendrites, can regulate motor transport. To understand how the organization of microtubules within bundles can regulate transport, we studied kinesin-1 motility on three bundle types: random-polarity bundles that are close-packed, parallel polarity bundles, and antiparallel polarity bundles that are spaced apart. We find that close-packed bundles inhibit motor motion, while parallel arrays support unidirectional motion. Spacing the microtubules with microtubule-associated proteins enhances run lengths. Our results indicate that microtubule bundle architecture dictates the motion of single motors and could have effects on cargo transport.
Department
Department of Physics
Original Publication Date
11-1-2014
DOI of published version
10.1002/cm.21197
Recommended Citation
Conway, Leslie; Gramlich, Michael; Ali Tabei, S. M.; and Ross, Jennifer L., "Microtubule Orientation And Spacing Within Bundles Is Critical For Long-Range Kinesin-1 Motility" (2014). Faculty Publications. 1351.
https://scholarworks.uni.edu/facpub/1351