Faculty Publications
Detailed Balance Broken By Catch Bond Kinetics Enables Mechanical-Adaptation In Active Materials
Document Type
Article
Keywords
active matter, catch bonds, detailed balance
Journal/Book/Conference Title
Advanced Functional Materials
Volume
31
Issue
10
Abstract
Unlike nearly all engineered materials which contain bonds that weaken under load, biological materials contain “catch” bonds which are reinforced under load. Consequently, materials, such as the cell cytoskeleton, can adapt their mechanical properties in response to their state of internal, non-equilibrium (active) stress. However, how large-scale material properties vary with the distance from equilibrium is unknown, as are the relative roles of active stress and binding kinetics in establishing this distance. Through course-grained molecular dynamics simulations, the effect of breaking of detailed balance by catch bonds on the accumulation and dissipation of energy within a model of the actomyosin cytoskeleton is explored. It is found that the extent to which detailed balance is broken uniquely determines a large-scale fluid-solid transition with characteristic time-reversal symmetries. The transition depends critically on the strength of the catch bond, suggesting that active stress is necessary but insufficient to mount an adaptive mechanical response.
Original Publication Date
3-1-2021
DOI of published version
10.1016/j.hnm.2020.200121
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Language
en
Recommended Citation
Tabatabai, Alan Pasha; Seara, Daniel S.; Tibbs, Joseph; Yadav, Vikrant; Linsmeier, Ian; and Murrell, Michael P., "Detailed Balance Broken By Catch Bond Kinetics Enables Mechanical-Adaptation In Active Materials" (2021). Faculty Publications. 108.
https://scholarworks.uni.edu/facpub/108