Faculty Publications
Document Type
Article
Publication Version
Published Version
Keywords
infrared spectroscopy, laboratory, mass spectrometry, photochemistry, tholin, Triton
Journal/Book/Conference Title
Journal of Geophysical Research: Planets
Volume
127
Issue
1
Abstract
Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn's moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near-infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton's tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen-rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen- and nitrogen-rich haze materials. These Triton haze analogs have clear observable signatures in their near-infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies.
Department
Department of Chemistry and Biochemistry
Original Publication Date
1-1-2022
Object Description
1 PDF file
DOI of published version
10.1029/2021JE006984
Repository
UNI ScholarWorks, Rod Library, University of Northern Iowa
Copyright
©2022 The Authors. Creative Commons Attribution-NonCommercial License.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Language
en
File Format
application/pdf
Recommended Citation
Moran, Sarah E.; Hörst, Sarah M.; He, Chao; Radke, Michael J.; Sebree, Joshua A.; Izenberg, Noam R.; Vuitton, Véronique; Flandinet, Laurène; Orthous-Daunay, François Régis; and Wolters, Cédric, "Triton Haze Analogs: The Role Of Carbon Monoxide In Haze Formation" (2022). Faculty Publications. 5219.
https://scholarworks.uni.edu/facpub/5219