Faculty Publications


Toward a global phylogeny of the Brassicaceae

Document Type



Brassicaceae, Monophyly, nrDNA ITS, Phylogeny, Tribes

Journal/Book/Conference Title

Molecular Biology and Evolution





First Page


Last Page



The Brassicaceae is a large plant family (338 genera and 3,700 species) of major scientific and economic importance. The taxonomy of this group has been plagued by convergent evolution in nearly every morphological feature used to define tribes and genera. Phylogenetic analysis of 746 nrDNA internal transcribed spacer (ITS) sequences, representing 24 of the 25 currently recognized tribes, 146 genera, and 461 species of Brassicaceae, produced the most comprehensive, single-locus-based phylogenetic analysis of the family published to date. Novel approaches to nrDNA ITS analysis and extensive taxonomic sampling offered a test of monophyly for a large complement of the currently recognized tribes and genera of Brassicaceae. In the most comprehensive analysis, tribes Alysseae, Anchonieae plus Hesperideae, Boechereae, Cardamineae, Eutremeae, Halimolobeae, Iberideae, Noccaeeae, Physarieae, Schizopetaleae, Smelowskieae, and Thlaspideae were all monophyletic. Several broadly defined genera (e.g., Draba and Smelowskia) were supported as monophyletic, whereas others (e.g., Sisymbrium and Alyssum) were clearly polyphyletic. Analyses of ITS data identified several problematic sequences attributable to errors in sample identification or database submission. Results from parsimony ratchet and Bayesian analyses recovered little support for the backbone of the phylogeny, suggesting that many lineages of Brassicaceae have undergone rapid radiations that may ultimately be difficult to resolve with any single locus. However, the development of a preliminary supermatrix including the combination of 10 loci for 65 species provides an initial estimate of intertribal relations and suggests that broad application of such a method will provide greater understanding of relationships in the family. © The Author 2006. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

Original Publication Date


DOI of published version