Report on Studies of Streams in the Iowa Driftless Region

James W. Eckblad
Luther College

Thomas G. Coon
Luther College

Copyright ©1984 Iowa Academy of Science, Inc.
Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation
Available at: https://scholarworks.uni.edu/pias/vol91/iss1/11

This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Report on Studies of Streams in the Iowa Driftless Region

JAMES W. ECKBLAD and THOMAS G. COON

Department of Biology, Luther College, Decorah, Iowa 52101

The screams of the Iowa Driftless Area occupy old entrenched valleys, have high gradients, and transport cool waters flowing rapidly over rocky substrates. Water quality, overall, is relatively high when judged by either physio-chemical characteristics or stream communities. Distribution of aquatic biota largely reflects the habitats provided by spring-fed streams.

INDEX DESCRIPTORS: Stream limnology, rivers, stream fauna

Iowa has an area of about 9,000 km² (3,475 mi²) in its northeastern corner which is drained by relatively old entrenched meandering streams. Streams of this driftless region of Iowa are largely within the drainage basins of three rivers (Upper Iowa River, Yellow River, Turkey River) which drain towards the east, where they join the Upper Mississippi River. The history of these streams touches many phases of human life. They have served as temporary political boundaries, as namesakes for prehistoric cultures and geological formations, as the inspiration for a world-famous composer, and as the site of the first water mill in Iowa (Petersen, 1941).

In this report we call attention to studies which have been conducted on these streams and briefly describe some of their abiotic and biotic characteristics.

The Upper Iowa River and the Turkey River are the longest streams with the largest drainage basins of the Iowa driftless area (Table 1). Although the western portions of both basins lie outside the driftless area, but within the Paleozoic Plateau (Prior, 1976), we have included the entire drainage basin for consideration in this paper. Several small basins (e.g. Village Creek and Paint Creek) whose streams drain directly into the Upper Mississippi River are also included.

Fig. 1. The Upper Iowa River Drainage Basin (from Petersen, 1941).

UPPER IOWA RIVER DRAINAGE BASIN

The Upper Iowa River (Fig. 1) drains an area of approximately 2736 km². Originating in the glacial drift plains of Mower County, Minnesota, it falls about 222 m during its 217 km journey. The Upper Iowa flows in a southeasterly direction, dropping 152 m in elevation to Decorah, Iowa, and then angles to the northeast for the last 80 km before discharging into the Mississippi River just south of New Albin, Iowa. The lower 11 km have been channelized as part of a 1958 flood control project by the U.S. Army Corps of Engineers. Dams impound the streams' water at Lime Springs, Iowa, and about 6.5 km and 11.3 km downstream from Decorah. Numerous springs in the drainage basin emerge from limestone or sandstone formations, providing water at a temperature of about 9° C throughout the year; 12 tributary streams are included in the Iowa Conservation Commission's trout stocking program.

In 1972 the U.S. Congress designated the Upper Iowa as one of 27 rivers for inclusion in the National Wild and Scenic River System. Subsequently, the Upper Iowa has been the subject of more research.
suggest the presence of relatively fur

Allamakee was averaging three times
dearer

developed as a widely branching dendritic waterway through a

Turkey River

Village Creek

Pais Creek

Yellow River

Bloody Run Creek

Sny Magill Creek

Turkey River

Little Turkey

Volga River

Crane Creek

Table 1. Major Drainage basins of the Iowa Driftless region*.

<table>
<thead>
<tr>
<th>Drainage Basin</th>
<th>Stream length (km)</th>
<th>Area (km²)</th>
<th>Stream Gradient (m/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Iowa</td>
<td>217</td>
<td>2736</td>
<td>0.98</td>
</tr>
<tr>
<td>Village Creek</td>
<td>24</td>
<td>197</td>
<td>4.79</td>
</tr>
<tr>
<td>Pais Creek</td>
<td>34</td>
<td>186</td>
<td>3.50</td>
</tr>
<tr>
<td>Yellow River</td>
<td>56</td>
<td>624</td>
<td>3.12</td>
</tr>
<tr>
<td>Bloody Run Creek</td>
<td>19</td>
<td>97</td>
<td>6.19</td>
</tr>
<tr>
<td>Sny Magill Creek</td>
<td>11</td>
<td>92</td>
<td>5.30</td>
</tr>
<tr>
<td>Turkey River</td>
<td>217</td>
<td>4391</td>
<td>0.89</td>
</tr>
<tr>
<td>Little Turkey</td>
<td>56</td>
<td>920</td>
<td>0.76</td>
</tr>
<tr>
<td>Volga River</td>
<td>53</td>
<td>1056</td>
<td>1.27</td>
</tr>
<tr>
<td>Crane Creek</td>
<td>70</td>
<td>550</td>
<td>1.17</td>
</tr>
</tbody>
</table>

* Physical details for many smaller trout streams of the Iowa Driftless area are presented by Paragamian (1981).

studies than other streams of the Iowa driftless area (Table 2). The studies have ranged from those conducted over 12 months (McMullen, 1972) to those of only brief sampling periods (Meierhoff and Prill, 1982). In addition to the Upper Iowa River, a variety of tributary streams within the drainage basin have been included in these studies (e.g. Sherpelz and Eckblad, 1974). There is a relatively high water quality within this basin (USEPA, 1979), but localized areas, especially immediately downstream from Decorah, have excessive organic loading (Eckblad, 1974; Meierhoff and Prill, 1982).

Many people use this river for fishing, tubing, and canoeing. For example, recreational use of the Upper Iowa River by canoeists was 6,529 canoeist-days during a 101-day period beginning May 27, 1973. About 83 percent of this canoeing took place on the river reach from Kendallville to Decorah, Iowa (Seitz, 1974).

YELLOW RIVER DRAINAGE BASIN

The Yellow River arises in southeastern Winneshiek County from a series of springs between Osian and Frankville, Iowa (Fig. 2). It has developed as a widely branching dendritic waterway through a relatively narrow and steep-sided valley with a stream gradient averaging three times that of the Upper Iowa River. The stream is thought to have received its name from the yellow-colored suspended sediment noted at its mouth during high flow conditions, and its name appears on maps from the late 1700's. Samuel Lewis included the Yellow River on his map of Louisiana in 1804, but he misjudged its origin as being a lake in the vicinity of present-day Marshalltown, Iowa. It is of some historical interest that the first water mill in Iowa was built on this river in 1831 and the earliest settlements in Allamakee County were in the valley of the Yellow River (Petersen, 1941).

Had the early explorers ascended the river any distance, they might have given the Yellow River a different name. Few Iowa streams have clearer water during most of the year than the Yellow River. It occupies one of the few valleys of the state which was never developed with either a railroad or primary highway. This steeply inclined valley is potentially subject to high rates of soil erosion, and recent studies have shown that BOD, organic nitrogen, total phosphate, metals, and pesticides increased immediately following rainfalls (Kennedy and Splinter, 1983). In general, these elevated levels were of short duration, and biological indicators like benthic macroinvertebrates suggest the presence of relatively high water quality for the Yellow River (Prill et al., 1982). We found no recent studies of stream algae for the Yellow River (Table 2).
TURKEY RIVER DRAINAGE BASIN

The river known by the Sauk and Fox Indians as the "Penakunsebo", apparently for the large number of wild turkeys in its valley, flows through some of the most fertile agricultural land of northeast Iowa (Petersen, 1941). Its three large tributary streams (Crane Creek, Little Turkey River, Volga River) give the Turkey River drainage basin an area that is seven and one-half times that of the Yellow River and twice as large as that portion of the Upper Iowa basin lying within Iowa (Fig. 3). Crane Creek originates in the glacial plain region of northern Howard County and flows southeasterly, almost paralleling the Wapsipinicon River to its west, for approximately 70 km until its junction with the Little Turkey River in Fayette County. Chemical and biological evidence, thus far, indicate a relatively unpolluted, stable stream environment for Crane Creek (Prill and Meierhoff, 1980). The Little Turkey River flows southeast about 56 km through Chickasaw and Fayette counties to its confluence with the Turkey River upstream from Eldorado. Water quality studies have indicated diverse and healthy stream communities for the Little Turkey River (Meierhoff and Prill, 1980).

The Volga River originates in Fayette County, on the glacial plain of the Iowan Surface landform, and flows to the southeast for its first 27 km, where it then intersects the Paleozoic Plateau landform (Prior, 1976). A 12.4 km reach of this stream flows through the Volga River State Recreation Area (VRSRA) east of Fayette. The Volga River has a high water quality (Kennedy, 1978; Prill and Meierhoff, 1978), with a rich diversity of aquatic biota (Eckblad, 1979; Reis, 1980). We found no recent studies of algae within the Turkey River drainage (Table 2).

MISSISSIPPI TRIBUTARY DRAINAGE BASINS

We have not attempted to identify literature dealing with the Mississippi River reach passing through the Iowa driftless area, but some background to this large river system is provided by Cawley (1973) and Eckblad (1973). Four smaller drainage basins of the Iowa driftless area discharge directly into the Mississippi River. These are, beginning with the most northern, Village Creek, Paint Creek, Bloody Run Creek, and Sny Magill Creek. These relatively short, widely branching dendritic waterways have high stream gradients with steep-sided wooded valleys. The water quality of these streams has usually been judged to be quite high and they provide a suitable habitat for trout (Prill and Meierhoff, 1978).

STREAM FAUNA FOR THE IOWA DRIFTLESS REGION

The characteristic karst topography of the Iowa Driftless Area results in a very limited amount of pond or lake habitat. As a result, aquatic organisms may have distribution patterns reflecting, in part at least, the absence of standing waters. This may be the case for a variety of Iowa's aquatic biota (e.g., the plant distributions given by Lammers and Van der Valk, 1977 & 1978), but we will focus on distributions of selected fish and crayfish of the driftless streams.

The fathead minnow, fantail darter, green sunfish, and the common crayfish Orconectes virilis are among those river species found throughout Iowa, including the driftless area (Cleary, 1951; Phillips, 1980). On the other hand, several species of fish (longnose dace, slimy sculpin, mottled sculpin, and brook charr) and the crayfish Orconectes propinquus appear to have their Iowa distributions restricted to the driftless area. Some species within the driftless area are restricted to the Upper Mississippi River and the mouths of its tributaries (e.g., silver chub, bighouse buffalo, gars, sturgeons, and crayfish species Procambarus acutus and Procambarus gracilis). A few species reported from streams just west of the driftless area (e.g., golden shiner, tadpole madtom, bullhead minnow, northern pike, and Orconectes immundis, Orconectes rusticus) have not been reported from stream reaches running through the Driftless Area (Phillips, 1980).

Most fish species restricted to the Driftless Area of Iowa are...
ern Iowa assumes that the area was covered by glaciers to account for the absence of certain species, such as as species better adapted to cool water habitats. Some species, such as the brook charr and sculpins, are likely glacial relicts (Bailey, 1956), which may have persisted in the streams as a refuge from nearby glaciation.

Some species absent from the Iowa Driftless Area streams have habitat requirements not provided by these river systems. Some are species found only in large rivers, while others prefer either slower flowing streams or small ponds and lakes. The drainage systems west of the Iowa Driftless Area, such as the Wapsipinicon and Cedar Rivers, originate in the glacial plains and provide a variety of stream habitats with usually more sand than rocky substrates. This difference may account for the presence of golden shiners, pumpkinseed sunfish, and tadpole madtoms in these streams, while they are not commonly reported for streams of the Iowa Driftless Area.

LITERATURE CITED

Fig. 3. The Turkey River Drainage Basin (from Petersen, 1941).