1923

The Reflecting and the Absorbing Power of a Photographic Emulsion

P. S. Helmick
where \(\nu \) = critical frequency in ultra-violet (\(v \)) or infra-red (\(r \)),
\(N \) = Avogadro's constant,
\(h \) = Planck's element of action,
\(M \) = molecular weight of the substance,
\(n \) = valency of atom to which electron belongs,
\(e \) = charge on an electron,
and \(r = \frac{1}{2} \) distance between two neighboring atoms.

Substitution of known experimental values into the four formulae predicts the existence of a natural ultra-violet frequency of silver bromide in the neighborhood of 1900\(\AA \).

THE REFLECTING AND THE ABSORBING POWER OF A PHOTOGRAPHIC EMULSION

P. S. HELMICK

(ABSTRACT)

Measurements have been made upon the reflecting and the absorbing power of silver bromide emulsion with wave-lengths between 2100\(\AA \) and 5782\(\AA \). The reflecting power of silver bromide emulsion averages about 7 per cent for the region 2100\(\AA \) to 5200\(\AA \). A thickness of emulsion (0.021 mm) as found in a commercial photographic film absorbs about 96 per cent of incident radiation between 5218\(\AA \) and 5782\(\AA \), and more than 99.99 per cent of radiation whose wave-length is less than 3247\(\AA \). From 5782\(\AA \) to at least 2294\(\AA \) the gelatine in a photographic emulsion has a negligible absorption as compared with the absorption of the silver bromide of the emulsion.

NATIONAL RESEARCH FELLOWSHIP,
PALMER PHYSICAL LABORATORY,
PRINCETON, NEW JERSEY.