Proceedings of the Iowa Academy of Science

Volume 31 | Annual Issue

1924

A Study of the Movements of the Empty Stomach in the Mollusca

T. L. Patterson
Stanford University

Copyright ©1924 Iowa Academy of Science, Inc.
Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation
Available at: https://scholarworks.uni.edu/pias/vol31/iss1/152

This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
A STUDY OF THE MOVEMENTS OF THE EMPTY STOMACH IN THE MOLLUSCA

T. L. PATTERSON

Our knowledge concerning the variations of the gastric activity in the various animal groups is still very incomplete and this is notably true in the case of the invertebrates. The present investigation is limited to two species of marine and one species of terrestrial mollusca, which in so far as I am aware, represents the first study to be made on the movements of the empty stomach in any of the invertebrates. Of the marine forms, the first is a large belly-footed animal or univalved shell-fish known as Haliotis rufescens (Abalone), while the second is a large chiton called Cryptochiton stelleri, both species of which are found on the California coast, in the vicinity of Monterey Bay. The land form, Ariolimax Californicus, known as the giant slug is found in San Mateo County, California only. The contractions in both the marine forms were recorded by the balloon method, the animals being kept in a large vivarium provided with running sea water, while the method of direct inspection was used on Ariolimax.

In Haliotis, an esophageal fistula was made about 5 cm. posterior to the mouth by simply raising the shell and making a small transverse incision laterally with scissors through the exposed wall of the esophagus. The balloon was introduced through this opening and pushed into the stomach and the rubber tube for the manometer then carried through one of the fissures (openings) in the shell (Figure 1). The contractions always started in twelve to fifteen minutes following this procedure and were continuous. However, a certain type of altered periodicity was noted as indicated by periods of marked activity separated by periods of strong hunger contractions, the individual contractions having comparatively long intervals of rest between them (Figure 2-B). In starvation, the gastric contractions progressively increased in strength until after about two weeks when they approached the form of incomplete tetanus (Figure 2-C). The introduction of sea-water, fresh tap water, 1 per cent sodium carbonate or 0.5 per cent hydrochloric acid directly into the stomach produced inhibition in varying degrees, the intensity being indicated in the order of the respective
substances as given, it being the least in the case of sea-water and
the greatest with the acid.

In Cryptochiton, a fistula was found to be impracticable and it
became necessary to use a glass stomato-gastric tube covered with
rubber tubing. This was bent so as to fit into the mouth and then
passed into the much folded stomach with the balloon attach to the
end. The gastric contractions of this animal were also continuous
with only a very slight indication of an altered periodicity. They
appeared to be analogous with the twenty-second rhythm in man.

In Ariolimax, the method of direct inspection revealed that the
movements of the empty stomach were peristaltic and corresponded
fairly well in rate and duration with those of the marine forms
when observed under constant temperature conditions.

Mechanical and chemical stimuli when externally applied to the
sensory surfaces of these animals, as the mantle, epipodia, sense
palps, etc., invariably produced temporary inhibition of the gas­
tric hunger movements but its duration did not usually exceed
greatly the duration of the actual stimulation unless it was severe
(Figures 3 and 4-B).

A histological study of the alimentary tubes of Haliotis and of
Cryptochiton, revealed their structures to be similar to those found
in the alimentary canals of higher animals, with the exception that
the circular muscular layer of the Cryptochiton is comparatively
very thin and this is especially true of the cardiac end of the
stomach.

Figure 1. Shows Haliotis rufescens (Abalone) with two rubber tubes passing through
one of the fissures (openings) in the shell, to enter the esophageal fistula (not shown).
The shorter tube, having a gastric balloon attached to the end, connects with a re­
cording water manometer. The longer tube is for the introduction of fluids into the
stomach to determine the effects of inhibition.

Figure 2. Gastric contractions of the stomach of Haliotis rufescens, A, normal diges­
tive peristalsis. B, hunger peristalsis after a fast of ten days, showing the termina­
tion of a period of normal activity followed by strong hunger contractions, separated
by comparatively long intervals of rest and indicative of an altered periodicity. C,
hunger peristalsis after a fast of 16 days indicating an incomplete tetanus of the gas­
tric mechanism.

Figure 3. Inhibition of the gastric contractions in Haliotis rufescens after a fast of
ten days. At X, three of the sense palps were slightly pinched with forceps on the
mid portion of the epipodium.

Figure 4. Gastric contractions of the stomach of Cryptochiton stelleri, A, hunger per­
istalsis after a fast of twenty days with a time record below in one second intervals.
B, inhibition of hunger peristalsis after a fast of seventeen days. At X, ventral edge
of mid-portion of mantle was slightly stimulated with a glass rod.

HOPKINS MARINE STATION OF STANFORD UNIVERSITY,
PACIFIC GROVE, CALIFORNIA, AND
DETROIT COLLEGE OF MEDICINE AND SURGERY,
DEPARTMENT OF PHYSIOLOGY, DETROIT.
Figure 2.
Figure 3.

Figure 4.