The Action of a Helmolts Resonator in a Branch Line

G. W. Stewart

University of Iowa

Copyright © Copyright 1924 by the Iowa Academy of Science, Inc.
Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation
Available at: https://scholarworks.uni.edu/pias/vol31/iss1/127
If, however, Z^4 be defined as the ratio between the pressure and the rate of volume displacement in the branch, the ratio of incident to transmitted energy can be shown to be:

$$\frac{Z_1 - \frac{\rho a}{2s} Z_2^2}{Z_1^2 + Z_2^2}$$

(2)

Consider a general case where the attached vessel has a point impedance, Z_a, this referring to a point just within the vessel. Denoting this by Z_a, the incident pressure P at the opening can be expressed as:

$$\frac{p_c}{c} x + \frac{\rho a}{2s} x + Z_a x = P$$

(3)

From this it can be shown that the ratio of transmitted to incident energy is:

$$\frac{Z_a^2 + \left(\frac{ka}{c} Z_a\right)^2}{Z_a + \frac{\rho a}{2s}}$$

(4)

wherein k is 2π-wavelength and c is the conductivity of the orifice. This is a general formula and has been tested in the case of a cylindrical resonator, a Helmholtz resonator and a simple orifice. In any branch in general, let there be two unknown quantities Z_1 and Z_2. It is possible to measure the ratio in (4) with conduits of various areas s and thus to obtain the values of Z_1 and Z_2 separately assuming that c is known.

UNIVERSITY OF IOWA.

THE ACTION OF A HELMHOLTZ RESONATOR IN A BRANCH LINE

G. W. STEWART

The general impression of a Helmholtz resonator is that, since its dissipation is small, its tuning is fairly sharp. It is noted with some surprise, therefore, that when used as a side branch in an acoustic transmission line it affects the transmission over a wide range of frequencies. The theory, derived from the general case in the preceding abstract has been checked by experiment with resonators of varying dimensions and the theory verified to a very satisfactory degree.

UNIVERSITY OF IOWA.