1925

The Reaction of Nitrogen Trichloride with Various Types of Olefine Hydrocarbons

G. H. Coleman
State University of Iowa

A. W. Campbell
State University of Iowa

G. M. Mullins
State University of Iowa

Copyright © Copyright 1925 by the Iowa Academy of Science, Inc.
Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation
Available at: https://scholarworks.uni.edu/pias/vol32/iss1/50

This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
out, the best yields being obtained at about $-20^\circ C$. At temperatures much below this, the reaction is very slow. The yields are better with carbon tetrachloride as the solvent than with the other solvents used.

Acetylene hydrocarbons react with nitrogen trichloride forming nitrogen and ammonium chloride. Only traces of an amine are obtained.

State University of Iowa.

THE REACTION OF NITROGEN TRICHLORIDE WITH VARIOUS TYPES OF OLEFINE HYDROCARBONS

G. H. Coleman, A. W. Campbell, and G. M. Mullins

Abstract)

With styrene nitrogen trichloride forms 1-chloro-2-phenyl-2-dichloroamino-ethane. When dry HCl is passed into a carbon tetrachloride solution of this compound 1-chloro-2-phenyl-2-amino-ethane and free chlorine are formed. Propene gives an analogous addition compound having similar properties. 2-Methyl propene and nitrogen trichloride react very rapidly to form ammonium chloride, nitrogen and chlorinated hydrocarbons. No stable addition product is formed in this reaction.

State University.

DECOMPOSITION OF HYDROGEN BROMIDE BY SILENT ELECTRIC DISCHARGE

J. J. Canfield with Anson Hayes

Abstract)

Very few equilibria of gases under the influence of the silent electric discharges have been determined although a considerable number of experiments are recorded in the literature regarding its effect on certain reactions. In order to obtain more data on the chemical effect of the discharge through gases, so that generalizations of the action might be made, the gaseous equilibrium $2\text{HBr} \rightarrow \text{H}_2 + \text{Br}_2$ was determined. Equilibrium at $33^\circ C$ and atmospheric pressure, using 10,000 to 15,000 volts, was reached with $33.5\% \text{HBr}$, $33.25\% \text{H}_2$ and $33.25\% \text{Br}_2$ present in the mixture. According to the best heat capacity data available and assuming no appreciable dissociation of Br_2 to 2Br, the above