University of Northern Iowa UNI ScholarWorks

Graduate Research Papers

Student Work

1992

An Analysis of How the Payload and the Speed Affect the Repeatablility of the Microbot Teachmover Robot

Zifan Ju University of Northern Iowa

Let us know how access to this document benefits you

Copyright ©1992 Zifan Ju Follow this and additional works at: https://scholarworks.uni.edu/grp

Recommended Citation

Ju, Zifan, "An Analysis of How the Payload and the Speed Affect the Repeatablility of the Microbot Teachmover Robot" (1992). *Graduate Research Papers*. 3824. https://scholarworks.uni.edu/grp/3824

This Open Access Graduate Research Paper is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Graduate Research Papers by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

An Analysis of How the Payload and the Speed Affect the Repeatablility of the Microbot Teachmover Robot

Abstract

With the increasing application of robots to many fields in our life, the accuracy and the repeatability of robots become more and more important. Many applications require robots to have high repeatability and accuracy. There are many factors which can affect the repeatability and the accuracy of a robot.

This study was to examine how the two key factors of payload and speed affect repeatability. The experiment was conducted in the CAM Laboratory of the Industrial Technology Center, University of Northern Iowa, by using Microbot TeachMover. Six different payloads: 2gm, 20gm, 65gm, 130gm, 180gm and 250 gm, and three different speeds: speed(3), speed(5) and speed(?) were exerted under the control of the same program. The robot with certain payload and speed ran 30 cycles, and the spatial positions were measured by three dialindicators which represented three-dimensional coordinates (X,Y,Z). After the data were collected, the relative spatial position deviation was calculated. The first cycle point was used as the original position. The researcher used the mean of the spatial position deviation and the range of spatial position deviation to analyze the affect of payloads and speeds on repeatability. Also linear trend "b" and the coefficient of correlation "r" were used to identify repeatability change during the 30 cycles. Analyzing the collected data led to the conclusion that light payload and medium speed have better repeatability, and both higher speed (7) and lower speed (3) lead to lower repeatability.

AN ANALYSIS OF

HOW PAYLOAD AND SPEED AFFECT THE REPEATABILITY OF THE MICROBOT TEACHMOVER ROBOT

A Research Paper Presented to the Graduate Faculty of the Department of Industrial Technology University of Northern Iowa

In Partial Fulfillment of the Requirement for the Non-Thesis Master of Arts Degree

by

Zifan Ju

Date: February 4, 1992

Approved by:

Douglas Pine

_____Date

⁻Dr. Douglas Pine (Advisor)

M. Roger Betts

Dr. Roger Betts

Feb.

Date

ACKNOWLEDGEMENTS

In finishing this research project, I got much help from Dr. Roger Betts and Dr. Douglas Pine. I would like to express my great appreciation for their directing, supporting and coaching.

ABSTRACT

With the increasing application of robots to many fields in our life, the accuracy and the repeatability of robots become more and more important. Many applications require robots to have high repeatability and accuracy. There are many factors which can affect the repeatability and the accuracy of a robot.

This study was to examine how the two key factors of payload and speed affect repeatability. The experiment was conducted in the CAM Laboratory of the Industrial Technology Center, University of Northern Iowa, by using Microbot TeachMover. Six different payloads: 2gm, 20gm, 65gm, 130gm, 180gm and 250 gm, and three different speeds: speed(3), speed(5) and speed(7) were exerted under the control of the same program. The robot with certain payload and speed ran 30 cycles, and the spatial positions were measured by three dialindicators which represented three-dimensional coordinates (X,Y,Z). After the data were collected, the relative spatial position deviation was calculated. The first cycle point was used as the original position. The researcher used the mean of the spatial position deviation and the range of spatial position

deviation to analyze the affect of payloads and speeds on repeatability. Also linear trend "b" and the coefficient of correlation "r" were used to identify repeatability change during the 30 cycles. Analyzing the collected data led to the conclusion that light payload and medium speed have better repeatability, and both higher speed (7) and lower speed (3) lead to lower repeatability.

TABLE OF CONTENTS

CHAP:	TER PI	AGE
I.	INTRODUCTION	. 1
	Purpose of the Research	. 3
	Research Problem	, 4
	Research Questions	. 4
	Significance of the Research	. 5
	Delimitations	. 6
	Assumptions	. 7
	Definitions	. 8
II.	LITERATURE REVIEW1	LO
	Introduction1	LO
	Definition	L1
	Classification and Type of Robots	L1
	Significance of the Specifications	L4
	Parametric Factors1	L6
	Static Errors	L8
	Dynamic Errors	L9
	Analysis of Repeatability	20
III.	RESEARCH DESIGN AND METHODOLOGY	23
	Identification of Variables	23
	Instrumentation	24
	Speed/Payload MatrixVariables Groups	25
	Data collection procedure	26

	Data Analysis Procedure27
	Extending Trend Study of @D31
	Robot Program Description32
IV.	PRESENTATION AND ANALYSIS OF DATA
	Results of the Experiment
	Analysis of "@D" and "R"55
	Analysis of "b" and "r"60
v.	SUMMARY, CONCLUSION AND RECOMMENDATIONS74
	Summary
	Discussion and Conclusion76
	Recommendations79
	REFERENCES
	APPENDIX A:
	The Program of Microbot for This Research83
	APPENDIX B
	Microbot TeachMover Characteristics
	APPENDIX C
	The Result of "b" and "r" Calculated With "POM"
	Software Package

-

LIST OF TABLES

TABLES
1. Non-slip Motor Speeds vs. Payloads
2. Payloads and Speeds26
3. Data for Payload (2) and Speed (3)
4. Data for Payload (2) and Speed (5)
5. Data for Payload (2) and Speed (7)
6. Data for Payload (20) and Speed (3)
7. Data for Payload (20) and Speed (5)
8. Data for Payload (20) and Speed (7)
9. Data for Payload (65) and Speed (3)42
10. Data for Payload (65) and Speed (5)43
11. Data for Payload (65) and Speed (7)44
12. Data for Payload (130) and Speed (3)45
13. Data for Payload (130) and Speed (5)
14. Data for Payload (130) and Speed (7)47
15. Data for Payload (180) and Speed (3)
16. Data for Payload (180) and Speed (5)
17. Data for Payload (250) and Speed (3)
18. Data for Payload (65) and Speed (5)50 cycles51
19. Data for Payload (65) and Speed (7)50 cycles53
20. Summary of the Change Rate of Deviation Slope61
21. Summary of the Coefficient of Correlation "r"61

LIST OF FIGURES

<u>Fig</u> u	<u>ire</u> <u>Page</u>
1.	Calculation Demonstration of "@D"28
2.	The Microbot TeachMover
3.	Mean of the Deviation "@D"
4.	Range of the Deviation "R"
5.	Mean of the Deviation "@D"
6.	Range of the Deviation "R"
7.	Graphic of Speed (3) with Different Payload62
8.	Graphic of Speed (5) with Different Payload63
9.	Graphic of Speed (7) with Different Payload64
10.	Graphic of Payload (2) with Different Speed65
11.	Graphic of Payload (20) with Different Speed66
12.	Graphic of Payload (65) with Different Speed67
13.	Graphic of Payload (130) with Different Speed68
14.	Graphic of Payload (180) with Different Speed69
15.	Graphic of Payload (250) with Different Speed70
16.	Graphic of Payload (65) with Speed (5)50 cycles72
17.	Graphic of Payload (65) with Speed (7)50 cycles73

.

CHAPTER I

INTRODUCTION

Since the robot entered our life, it has become more and more important. Industrial robots can be found anywhere producing many products we use and doing many boring jobs that people do not like to do.

Robot applications are continuously widening, and their functions are becoming more and more powerful, but many problems with using robots and with the design and function of robots still exist today. People expect robots to work perfectly. Robots need to meet people's high requirements.

Industrial robots have typically been used as general purpose positioning devices. In such a situation, the robot is programmed to move through a sequence of positions so that a tool or part held by the robot completes a desired task on a workpiece, whose position is already set in relation to that of the robot. The most important requirement for successful accomplishment of its task is the repeatability with which it can return to the taught

positions and with which successive workpieces can be presented to it (Taylor, 1985).

Some manufacturing operations, such as welding, deburring, routing and scanning, require the robot to move a tool in a continuous path. Therefore, kinematic measurement of accuracy and repeatability that test the robot's ability to trace accurately a path through its workspace at a rapid pace are far more important for these operations (Tracking system measures continuous path robot motions, 1985).

Most of the tasks need the robot to execute with high accuracy. "Accuracy of robots is required in an increasing number of applications" (Day, 1988, p. 1). Day (1988) said, "It is important for users of robots to understand factors affecting accuracy [and repeatability] and where present technology stands in making accuracy [and repeatability] improvements" (p. 9).

A major goal of robot research and development over many years has been finding techniques for improving the effective accuracy or repeatability of the manipulator, i.e., the precision with which it can place a part or tool at a fixed position relative to a

workpiece. Calibration methods and equipment sensing methods are the major approaches for such a problem (Taylor, 1985).

This study will use an experimental method on a Microbot TeachMover Robot to identify some important factors affecting the repeatability of a robot. The effect of payload and speed on repeatability will be determined.

This laboratory research can explore a way for researchers to make a significant study on industrial robots, and provide more information for industrial robot designers to improve the quality of robots. This study can also make up for a shortcoming of specifications on the basic parameters of the Microbot TeachMover Robot -- repeatability.

Purpose of the Research

The purpose of this study was to:

- Identify key factors that can affect the accuracy and repeatability of the Microbot TeachMover robot.
- Analyze an important characteristic -- repeatability
 -- as the dependent variable in a study of the Microbot TeachMover robot.

3. Gain more knowledge about industrial robots from the study of a robot in an educational laboratory.

Research Problem

There are various factors which may affect the repeatability of a given robot. The problem of this research was to determine how the factors of payload and speed affect the repeatability of a Microbot TeachMover Robot (MTMR).

Research Ouestions

The research questions of this study were:

- 1. How does the weight of payload affect the repeatability with a certain speed in terms of "QD" and "R"? "QD" is the mean of spatial position deviation of the thirty cycles; "R" is the range of spatial position deviation of the thirty cycles. Six different weights of payload were applied.
- 2. How does the speed with a certain payload affect the repeatability in terms of "@D" and "R"? Three speeds were tested.
- 3. How does the spatial position deviation "@D" change during the thirty cycles in regard to the

analysis of "b" and "r"? "b" is the changing rate of "@D"; "r" is the coefficient of correlation.

 How does @D change when the robot run more than 30 cycles. The payload 65 with speed 5 and 7 was applied under 50 cycles.

Significance of the Research

Robots have a large number of applications. They are generally flexible, reprogrammable and repeatable from cycle to cycle. However, for many new industrial applications in which high repeatability and accuracy are required, the current accuracy and repeatability can not satisfy these high requirements. The robot needs to be more accurate and more repeatable, and the physical location or trajectory reached by the endeffector must be precisely where the robot has been directed (Day, 1988).

The importance of a robot's accuracy and repeatability was recognized in the early years of robotics development, and it has taken some time for the necessary technology in manipulator development, sensor development, and application development to realistically and economically overcome robot

inaccuracy and poor repeatability. But we have not quite reached a stage when robots can be produced accurately within desired cost (Day, 1988).

By conducting this research, the factors which can affect the repeatability and accuracy of a robot will be carefully investigated and more valuable data will be collected and analyzed. As a result of this research, the researcher will supply some important information which can be used by robot designers to improve the quality of a robot.

The Microbot TeachMover Robot will be used in the laboratory for this research. The current instruction manual for the Microbot TeachMover Robot lacks information about the accuracy and repeatability in its specification list. This research can remedy this defect and make it better for future educational use.

Delimitations

This study was limited as follows:

 This research was conducted in the CAM Laboratory at University of Northern Iowa. The Microbot TeachMover robot which was used for this research had been used for about five years. Its accuracy

might not maintain the same level as a new one.

- The research used the teach pendant to program the robot. Only payload and speed were considered without considering other factors.
- Three dial-indicators were used to measure the spatial position deviation on X, Y, Z axis separately. Resolution of the Dial-Indicator is .001 inches.
- 4. Repeatability was studied in regard to the analysis of the relative spatial position deviation. A robot with certain payload and speed was run 30 cycles under the control of the same program.

Assumptions

This study had the following assumptions:

- 1. All the tests were not affected by environmental conditions.
- 2. There was no reading error during the measuring process.
- 3. There was no slippage between payload and gripper, robot and table as well as dial-indicator set-up and table. The table on which all tests were carried out did not shake during the test.

Definitions

The following terms were defined for this study:

- 1. The Microbot TeachMover Robot -- A small "educational" robot developed to help researchers and students learn about robots, with a low cost machine that fully simulates the large industrial machines (Heath, 1986).
- 2. The Teach Pendant -- A special command module used to command the robot to memorize points along the path of motion. It can also set timers to synchronize the operation, command the sensing of external inputs, and dispatch output signals to peripheral process equipment (Asfahl, 1985).
- 3. Payload--Weight of the object handled by the robot.
- 4. Robotic programming -- A key feature of robots which have capability for being reprogrammed for different tasks. There are many methods of programming. Teach pendant is one of the manual controller methods.
- 5. Repeatability--The ability to return to the same spot again and again after that point has been specified.
- 6. Speed--The important characteristic of a robot that

determines how fast the robot performs the programmed operations.

-

.

ŀ

CHAPTER II

LITERATURE REVIEW

Introduction

In the early 1960s, the first industrial robot was built under the cooperation of the George Devol and the Unimation company. Since then, industrial robots have been under serious development. Robots are invading the traditional manufacturing system. Totally automated factories are being built and are changing the landscape of manufacturing. In the last few years, the larger industries of the world have invested heavily in robots and automated manufacturing systems. The entrance of many and many companies into the robot business indicates that robotics will be fully implemented in the factories of the future (Heath, 1985; Hunt, 1990).

A robot is a machine that can easily be directed to do a variety of tasks without human supervision. Typical industrial robots are stationary machines, usually bolted to the floor or in an overhead position that can pick up parts and move them about. The basic

concept is to build a machine that is flexible enough to do a variety of jobs automatically, a device that could be easily taught or programmed so that, if the part or process changed, the robot could adapt to its new job without expensive retooling (Health, 1985; Kafrissen, 1984).

Definition

"A robot is a reprogrammable and multifunctional manipulator designed to move materials, parts, tools or specialized devices through various programmable motions in the performance of a variety of tasks" (McDonald, 1986, p. 5). The main applications of industrial robots are:

- * Loading and unloading machine tools;
- * Handling in manufacturing process, such as die casting;
- * Welding;
- * Spray painting;
- * Assembly;
- * Machining, such as deburring and drilling;
- * Inspection. (Koren, 1985, p. 175)

Classification and Types of Robots

Since robot configurations vary greatly, some

classification of robot geometries is necessary. The industry has settled upon the term "degrees of freedom" to describe the number of ways a robot can move. The form of these movements and the way they are assembled make up the robot configuration. Theoretically, there could be a large number of configurations for a robot. From a practical standpoint, however, almost all robots fall into a few popular configuration categories: articulating configurations, polar configurations, cylindrical configurations and cartesian configurations.

The most distinguishing feature used to describe an industrial robot is its power source. The power source usually determines the range of the robot's performance characteristics and in turn the feasibility of various applications. Basically, there are four principal power sources: hydraulic, pneumatic, electric and mechanical gear and cam. Electric robots are popular for precision jobs because they can be closely controlled and can be taught to follow complicated paths of motion. Electric robots can be divided into groups according to the types of electric motors that drive each of the axes of motion. One type uses

stepper motors, which are driven a precise angular displacement for every discrete voltage pulse issued by the control computer interface. The stepper-motor type robot is sometimes of the open-loop type. The other species of electric robot is the dc servo-driven type. These robots invariably incorporate feedback loops from the driven components back to the driver. Thus, the control system continuously monitors the positions of the robot components, compares these positions with the positions desired by the controller, and notes any differences or error conditions.

Another distinguishing feature of the robot is the degree of control possible over the robot motion. This control is affected by the choice of robot drives. Starting from the least sophisticated, we can classify four types of motion control: axis limit, point-topoint, contouring and line tracking. The most complex of contouring motion is line tracking which performs an operation while following alongside a continuously moving path. Line tracking has obvious advantages. The product being processed can be transported on a continuous conveyor instead of an intermittent one.

Although a modern industrial robot looks as though

it is a self-contained, intelligent machine, it is, in fact, a sophisticated combination of many engineering disciplines. The clever interfacing of the various parts has achieved the creation of a powerful tool to serve the pursuit of increased productivity and higher quality of manufactured goods (McDonald, 1986; Asfahl,1985).

In order to design robot systems, a company needs a wide variety of skills. When robots were first designed, mechanical engineering skills were the primary requirement. As robots became part of industrial production, manufacturing engineering skills were needed. As servo control and advanced sensors began to be used, the need for electronics engineers to enter the field became important. Further steps required the skills of programmers, computer hardware engineers, language designers, and vision specialists. The next generation of robots will require people skilled in artificial intelligence and such specialized areas as laser technology and ultrasonics (Poole, 1989).

Significance of the Specifications Generally, industrial robots are built of three

basic systems:

- 1. The mechanical structure consisting of mechanical linkage and joints capable of various movements.
- The control system, which can be of "non-serve" or "serve" type.
- 3. The power units, which can be hydraulic, pneumatic, electrical, mechanical or their combinations.

The variability of these systems' functions and the need for programmability make it a challenge to define a unique set of specifications that engineers can comfortably consider adequate for the final design of robots (Rivin, 1988). Stonecipher (1989) said, "The performance functions that can be analyzed in regard to the actuator are its dynamic capabilities, stability, spatial resolution, control accuracy, repeatability, and compliance" (p. 11).

The most obvious specification determined by the use of a manipulator is the physical or fundamental specification, and Andeen (1988) listed them as follow:

* Payload (Maximum) * Precision absolute accuracy, ability to go to any specified point; repeatability, ability to repeat a location; resolution, the smallest position step; * Speed velocity of the endpoint; cycle time, includes accelerations and decelerations. * Reach

```
* Stiffness. (p. 2)
```

These specifications are not a set of unrelated numbers, and they may be interrelated. Speed and weight, speed and precision or precision and reach will affect each other. Different payloads in the same speed should not be expected to get the same precision. The designer must recognize that in several performance areas strengthening one specification can decrease performance in another. Resolution, repeatability, and accuracy are the three most important characteristics in evaluating how well an arm can position its end effector (Atkeson, 1986; Andeen, 1988).

Parametric Factors

Robot parameters include kinematic parameters and dynamic parameters. In robotics, the solution of the direct kinematic problem involves the determination of the end effector's position and orientation and their rate of change, as a function of the given positions and speeds of the axes of motion. The position of the end effector, or robot tool, is defined as the TCP (tool center point), which is, for example, the edge of a welding gun or the center of a gripped object.

The kinematic analysis of a mechanical system means the determination of the position, velocity, and acceleration of the various mechanical elements forming the mechanism under consideration. The effect of the associated forces and torques, which take into account the mass and inertia of the mechanical elements, is considered in dynamic analysis (Hollerbach, 1982; N-Nagy, 1987).

In contrast to robot dynamics, one must also consider static conditions. Statics is concerned with forces that act on a body and the conditions required to obtain their equilibrium. Robots require hydraulic, pneumatic, or electric forces to change the position of the free end of the arm. These forces are needed because the robot is a mechanical device that offers resistance to change due to inertia and friction. Once a new position is obtained, the equilibrium has to be reestablished. In this relationship between acting forces and their opposing factors, errors in the response of the robot are produced that must be recognized.

Dynamics also deals with these forces, but it does so with respect to the motion they produce. It

establishes the relationship between acceleration (or deceleration) and the forces involved (Holzbock, 1986).

The robot here is nothing but a transducer changing one form of input into some other form of output. The degree to which the output changes in response to changes in input depends on the accuracy of the robot. When the input calls for a certain position, the robot must act to produce this position. The input is the true value and actual result is the inaccuracy or error. There are dynamic and static errors (Holzbock, 1986).

Static Errors

Holzbock (1986) stated:

Accuracy specifications as given by robot manufacturers practically always refer to the robot arm without end effector and without load being carried. Generally, either one diminishes the specified accuracy. Position accuracy also depends on the deceleration of the motion of the robot arm. For maximum accuracy, the robot has to make final approach to its programmed position very slowly. (p. 3)

But if this high accuracy level is used in program steps where it is not required, cycle time for these steps will be unnecessarily long. This is of particular importance where the motion from one point to another is composed of several steps, for example, when the robot moves around obstacles.

Backlash between two gears that are part of a power transmission produces a dead zone in which no output is produced while the input changes. The increase of the input must first be sufficient to lock the gears together before the output gear begin to follow the input gear. Static friction, also called stiction and break-loose force, is defined as the force required to initiate sliding or rolling motion between two contacting bodies (Holzbock, 1986).

Dynamic Errors

Robot joints are rotational and translational or linear elements that provide elbow, wrist, and other movements. Each degree of freedom of the robot requires its own joint to produce the desired motion. The joints are either directly or remotely driven by actuators that convert electrical, hydraulic, or pneumatic energy into motion.

Mass is a measure of inertia. It is considered a property of matter that resists change of motion. Inertia is the inherent property of bodies to resist any change in their state.

A body in motion may encounter two types of

friction: coulomb friction and viscous friction. Static friction resists the onset of motion, not motion once it takes place. Coulomb friction is also called dry friction or sliding friction. It is caused by minute irregularities of one surface engaging those of the surface over which it slides. It is diminished by lubrication. In a dynamic system, oscillation is generally associated with viscous friction and, hence, is proportional to speed. Oscillation is essential to prevent a system from instability that could otherwise produce excessive oscillations of the end effector of a robot (Holzbock, 1986).

Analysis of Repeatability

Repeatability is the function whereby the robot manipulator is able to repeat or reposition itself into a position that was previously trained or commanded. The internal factors that influence the repeatability of the manipulator system are its movement control system and mechanical components of the robot system (Mason, 1985).

Repeatability is different than accuracy. While accuracy deals with actual spatial position attained by the robot, repeatability deals with positional

discrepancies from cycle to cycle. When comparing repeatability and accuracy, the factors used to determine repeatability will always be of a greater value than absolute accuracy (Stonecipher, 1989; Day, 1988).

Repeatability is sub-classified by Day (1988) into omnidirectional repeatability and unidirectional repeatability. He said, "Repeatability is a function of many variables such as the number of cycles, location in workspace, temperature, speed/acceleration of path, payload, and so forth" (p. 2). So far, there is no unified method of measuring repeatability. Japan Industrial Standards (JIS) uses a seven-cycle measurement. Large robot users, such as General Motors and Ford, have defined their own test procedures to measure repeatability. Other methods of test and specification, such as the use of measurement cubes and spheres have been proposed (Day, 1988).

Environmental factors can also cause inaccuracies and irrepeatability. For example, temperature variations can cause link length changes in structural components and drive-train components. Temperature and relative humidity can affect characteristics of

lubricants used in drive trains (Day, 1988).

Angularity between each pair of adjacent axles also contributes to the inaccuracy of robots. Angularity can come from assembly error of fitting subassemblies together or in the seating of bearings supporting the axles. Day (1988) found, "Just an error of 0.1 degree in angularity could cause a link offset error of 1.745mm when the two adjacent axles were 1000mm apart" (p. 3). Robot accuracy measurement is the first step in understanding what errors are to be corrected.

As Day (1988) suggested, "It is important for users of robots to understand factors affecting [repeatability] and where present technology stands in making [repeatability] improvement" (p. 9).

There are intrinsic limitations in robot manipulators and in robot applications. "It will require joint efforts from users, manipulators, and researchers to achieve the most productive use of [an] accurate robot system" (Day, 1988, p. 9).

CHAPTER III

RESEARCH DESIGN AND METHODOLOGY

Identification of Variables

In this research, there were two independent variables -- payload and speed, and one dependent variable -- repeatability. There were many other variables, such as temperature, humidity, researcher's operating skill, and measurement error, as well as the elastic variation of the robot arm when the payload held by the robot touched the sensor of the dialindicators, all of which could have impacted the repeatability. But during the research process, the researcher mainly aimed at the relative position deviation caused by different working cycles, and not the absolute accuracy of the position an object needs The test was set up in an intensive short to reach. period of time to eliminate environmental effects on repeatability. Therefore, the variables caused by the system might not be considered. Also, the entire study was conducted on the same robot, so other influences caused by the equipment might be omitted.

Instrumentation

The robot program was made with teach pendant, and stored on a 5 1/4" floppy disc. The same program was used repeatedly with different variables (see Appendix A). Cube-shaped plastic and steel blocks were used to exert different payloads. Three dial-indicators were set together to measure the position deviation on X,Y,Z axis separately. Resolution of the dial-indicators is .001 inches.

The payload was held by the gripper with a pressure about 2.5 lbs and also made more tight by the tape around the payload and gripper. During the first few tests, because the measuring set-up did not match with payload well, the reading might not have been accurate. After the researcher changed the shape of some payloads and adjusted the measuring devices, the experiment began to be in process, and went on smoothly.

The gripper always held a certain payload during the 30 cycles. When the robot finished its one cycle and went back to its home position at which the measuring was carried out, there was a 12 second pause for the researcher to read the data, then the robot

automatically went on to the next cycle. The reading was taken as the payload touched the dial-indicators and gave pressure.

The researcher found that after the robot worked for about two to three hours, the heat from the motor made the base part of the robot hot, so when the robot finished one set of 30-cycles, the power of the robot was cut off for about 30-60 minutes to avoid the temperature possibly affecting the results. Before the robot began its first cycle for each pair of payload and speed, all the dial-indicators were set to zero, and the program was set to a new home position, i.e., only the "0" step was changed on a computer. But during the initial setting, human action on equipment might affect the reading of the first cycle, so when the researcher analyzed the data, he considered the position of the first cycle as the "0" position, i.e., the spatial coordinator (X1, Y1, Z1) was considered to be (0,0,0).

Speed/Payload Matrix--Variables Groups

According to the specifications of the MTMR (see appendix B), the payload should range between 0 and 455gm. The maximum number of program steps is 53.

Three maximum non-slip motor speeds correspond to three payloads as shown in Table 1 "Non-slip Motor Speeds vs. Payloads".

TABLE 1: Non-slip Motor Speeds vs. Payloads

Load	Half-steps per second	Equivalent teach control speed No.
0	400	8
226gm	206	5
455gm	99	3

Therefore, the payload and the speed were set for this experimental research as follows:

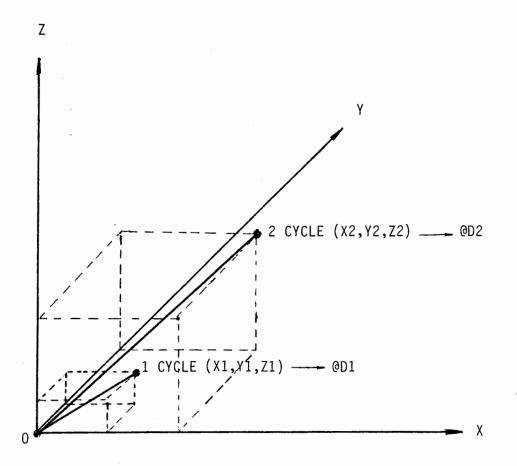
TABLE 2: Payloads and Speeds

payload	2	20gm	65gm	130gm	180gm	250gm
speeds	3,5,7	3,5,7	3,5,7	3,5,7	3,5,-	3,-,-

<u>Note</u>: For the payload 180gm, speed 7 was not used, in case Motor slip affected results. For the same reason, payload 250gm used speed 3 only.

Data Collection Procedure

The research data of this study were collected during a week of intensive tests. The whole experiment was divided into several groups for analysis. Each group contained one payload with three different speeds. Each pair of payload and speed, such as, 20gm of payload and a speed of 5, was tested during continuous 30 program cycles. Each program cycle gave one reading of position deviation with (@x, @y, @z) coordinates in which @x,@y,@z meant relative axle distance between current position and the original position. Then the relative space distance @D (see Figure 1) was calculated with the following formula:


 $QD=SQRT((QX)^{2}+(QY)^{2}+(QZ)^{2})$ <1>

Data Analysis Procedure

In order to analyze the affect of speeds and payloads on repeatability, the mean of the spatial position deviation "@D" and the range of spatial position "R" in 30 cycles was calculated.

@D=(@D1+@D2+...+@D30)/30 <2>

R=@Dmaximum-@Dminimum <3>

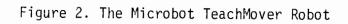
Coordinator: O (X0,Y0,Z0); 1 (X1,Y1,Z1); 2 (X2,Y2,Z2).

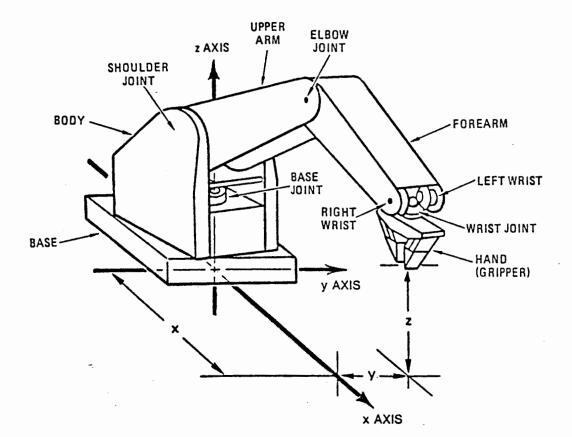
 $QD1 = SQRT((X1 - X0)^{2} + (Y1 - Y0)^{2} + (Z1 - Z0)^{2})$

 $QD2 = SQRT((X2 - X0)^{2} + (Y2 - Y0)^{2} + (Z2 - Z0)^{2})$

Figure 1: Calculation Demonstration of "QD"

The researcher also developed a linear trend line with a precise statistical method in order to analyze repeatability change in 30 cycles. The "least squares method" was applied here. This approach results in a straight line that minimizes the sum of the squares of the vertical differences from the line to each of the actual observations. The line is expressed as follows:


Y*=a+bX* <4>


- Note: X*, Y* axis in formula <2> have different meaning from X,Y axis in formula <1>. X,Y,Z coordinates are used as a real position of an object robot handling (see Figure 2), but X*,Y* are used for statistical analysis.

The slope "b" is found by the formula:

 $b = (\sum X * Y * - n\overline{X} * \overline{Y} *) / (\sum X^{2} - n\overline{X}^{2}) \qquad \langle 5 \rangle$

where b=slope of the regression line. ∑=summation sign. X*=the number of program cycles. Y*=computed value of space position deviation "@D".

 \overline{X}^* =the average of the value of the X*. Y*=the average of the value of the Y*. n=the number of data points or observations.

"a" was computed as follows:

a=Y*-bX* <6>

In addition to linear trend line, the coefficient of correlation "r" was calculated with the following equation:

$$r = (n \sum X * Y * - \sum X * \sum Y *) / (n \sum X * - (\sum X *)^{2}) (n \sum Y * - (\sum Y *)^{2}) < 7>$$

$$(-1 < r < 1)$$

A computer program could handle the above calculation "b" and "r'. A microcomputer software package, called AB:POM developed by Howard Weiss, Temple University, was used (see Appendix C). Slope of the regression line "b" and correlation coefficient "r" were used to analyze the distribution of spatial position deviations.

Extended Trend Study of @D

Due to the limitation of time and facility for this research, the researcher used 30 cycles of the program to observe the repeatability and its changing rate. In order to determine if the repeatability

pattern changes beyond 30 cycles, the researcher chose two pairs of speed and payload to execute this task; payload 65 with speed 5 and payload 65 with speed 7. Observations were recorded over 50 cycles under the same program used in the 30 cycles procedure. Spatial deviation @D was calculated the same way.

Robot Program Description

The robot program used in this experiment comprised some basic movements: base rotation, shoulder up-and-down, elbow up-and-down, wrist roll rotation and pitch up-and-down. It included the following steps corresponding to the steps in Appendix A.

<u>STEP</u>

DESCRIPTION

0	Home position. The base at 0 degree position, and shoulder and elbow fully extended with object held in gripper.
1	Pause 12 seconds, allow researcher to pick up readings between cycles.
2	Set speeds at 3, 5 or 7.
3	Raise shoulder and elbow away from home position.
4	Lower shoulder and elbow.
5	Rotate base +90 degree.
6	Raise elbow and shoulder to half-position.
7	Rotate base -180 degree.
8	Raise elbow and shoulder, and rise pitch up to limit position.
9	Rotate base +90 degree to 0 position.
10	Lower elbow, shoulder, and pitch.
11	Rotate pitch +90 degree.
12	Rotate pitch -180 degree.

- 13 Rotate pitch +90 degree.
- Rotate base +90 degree. 14
- Raise elbow and shoulder. 15
- Rotate base -180 degree. 16
- Lower elbow and shoulder. 17
- Rotate pitch +90 degree. Rotate pitch -90 degree. 18
- 19

-

- Rotate base back to 0 position. 20
- Raise shoulder and elbow, and raise pitch up 21 above home position.
- Smoothly lower shoulder and elbow to reach 22 home position and touch the dial-indicator.

CHAPTER IV

PRESENTATION AND ANALYSIS OF DATA

Results of Experiment

Following the procedures set in the methodology, the researcher finished testing fifteen pairs of payloads and speeds under thirty cycles and two pairs of payloads and speeds under fifty cycles. All the data are shown on the tables from Table 3 to Table 19, which include payload 65g and speed 5 as well as payload 65g and speed 7 with fifty cycles.

Each table contains the results of only one pair of payload and speed. @X, @Y, @Z were calculated with formulas: @X = X-X1, @Y = Y-Y1 and @Z = Z-Z1, in which (X1, Y1, Z1) is the coordinate of the first cycle's position. Because at the beginning of test, even though the researcher set the three dial-indicators at 0 positions, human action on equipment might affect the reading of the first cycles. Therefore the first cycle's position was considered as "0" position, then the other cycles' deviation @X, @Y, @Z can be looked as the relative distance from the first cycle's position.

As the researcher mentioned before, in this research, relative deviation is more significant than absolute deviation, because the repeatability is only concerned about position change cycle by cycle. Spatial deviation @D were calculated based on @X, @Yand @Z, i.e., @D= SQRT ($\text{@X}^2+\text{@Y}^2+\text{@Z}^2$). The mean spatial deviation @D and the range of deviation R during the thirty cycles were calculated and the results shown in Table 3 to Table 17. Table 18 and Table 19 would be used for the trend analysis of deviation changes. The unit used for the deviation in these tables are .001 inches. And the symbol "+" (omitted in tables) and "-" can be referenced to the Figure 2. For example, "@Z= -1.5" means the direction of position change is downward on Z axis.

From these tables, it can be seen that both payload and speed had an effect on the position deviation, i.e., the repeatability. Especially the payload from 0 to 130gm could satisfactorily indicate how they affected the repeatability. The heavy payload such as 180g and 250g sometimes made the robot motor slip during the test, which could affect the accuracy of the results.

.

Spatial Deviation for Payload (2) and Speed (3)

.

Spatial Deviation (in .001 inches)

-					
Cycle	@x	@y	@z	+@SQRT(@x^2+@y^2+@z^2)	
1	0	0	0	0	
2	1.4	0	6.9	7.0405	
3	7.2	0.1	7.5	10.397	
4	5.6	0.3	8.8	10.435	
5	7.2	0.9	9.7	12.113	
6	8.8	0.9	9.8	13.201	
7	10.1	1	12.8	16.335	
8	11.4	1.1	15.6	19.352	
9	12.8	1.2	16.6	20.996	
10	13.7	1.2	18.8	23.293	
11	14.7	1.5	21.7	26.253	
12	15.7	1.9	26.9	31.204	
13	13.8	1.9	18.7	23.318	
14	15.8	2	29.9	33.876	
15	17.8	1.9	31.5	36.231	
16	18.7	1.8	32.9	37.885	
17	19.5	2	34.7	39.853	
18	20.1	1.8	37.5	42.585	
19	20.8	1.7	36.7	42.218	
20	21.3	1.8	36.8	42.557	
21	21.8	2	41.8	47.185	
22	22.5	2	42.7	48.306	
23	23	1.8	44.7	50.302	
24	23.4	2	46.8	52.362	
25	23.9	1.7	47.9	53.558	
26-	24.5	1.5	48.2	54.090	
27	24.9	1.1	49.7	55.599	
28	25.2	1.1	49.8	55.823	
29	25.5	1.1	53.2	59.005	
30	26	1.2	52.2	58.329	

Note. @D=(@D1+@D2+...+@D30)/30=42.08 R=@Dmax-@Dmin=59

.

Spatial Deviation for Payload (2) and Speed (5)

....

Spatial Deviation (in .001 inches)

Cycl	@x	@y	@z	+@SQRT(@x^2+@y^2+@z^ 2)
1	0	0	0	0
2	0.8	2.8	2.4	3.7735
3	1.7	5.9	3.5	7.0675
4	2.6	8.9	3.8	10.020
5	3.6	11.6	4.8	13.059
6	4.5	12.6	5.9	14.622
7	5.5	13.9	6.8	16.422
8	5.9	15	6.9	17.533
9	6.9	16	8	19.173
10	7.1	16.8	8.6	20.164
11 ·	7.4	17.8	12	22.706
12	8	18.9	10	22.830
13	8.4	19.8	9.9	23.677
14	8.9	21.8	12	26.428
15	9.4	22.4	12.8	27.458
16	9.6	22.6	14.6	28.567
17	10.4	22.6	16.2	29.687
18	10.5	22.9	15.5	29.578
19	10.9	23.8	17	31.212
20	11.4	24.2	17.2	31.803
21	11.6	24.1	18.8	32.692
22	12	24.7	18.5	33.111
23	12.4	24.3	20	33.826
24	12.7	24.8	20.9	34.830
25	12.9	25.4	22	35.994
26-	13.5	25.8	23	37.106
27	13.8	25.7	23	37.147
28	13.9	25.7	24.2	37.938
29	14.2	25.4	24.1	37.783
30	14.7	25.4	25	38.551

Note. @D=(@D1+@D2+...+@D30)/30=25.16 R=@Dmax-@Dmin=38.55

.

Spatial Deviation for Payload (2) and Speed (7)

Spatial Deviation (in .001 inches)

-				
Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
1	0		0	0
2	1	2.9	-0.7	3.1464
3	1.3	6.2	4.2	7.6006
4	1.7	8	-0.2	8.1810
5	1.9	11.6	-1.6	11.862
6	2.1	14.1	-1.7	14.356
7	2.5	15.3	-3.2	15.829
8	2.6	18.3	-3.3	18.776
9	2.8	20.1	-3.9	20.665
10	3.4	22.1	-5.6	23.050
11	3.5	24	-5.6	24.891
12	3.7	27	-5.9	27.883
13	3.8	29.1	-5	29.769
14	4.2	30.5	-5.7	31.311
15	4.3	32.1	-5.7	32.884
16	4.7	33.6	-5.8	34.419
17	5	34.3	-5.8	35.144
18	5.4	34.6	-4.8	35.346
19	5.8	35.1	-4.8	35.898
20	5.8	38.6	-4.8	39.327
21	6.1	39.9	-4	40.561
22	6.5	39.1	-3.9	39.828
23	6.9	39.9	-4.2	40.709
24	7.1	40	-4	40.821
25	7.5	40.6	-3.7	41.452
26-	8	41.9	-4	42.844
27	8.3	42.2	-2.3	43.069
28	8.3	43.1	-2.3	43.952
29	8.4	44.2	-2.2	45.044
30	8.8	44.9	-0.9	45.763

Note. @D=(@D1+@D2+...+@d30)/30=29.15 R=@Dmax-@Dmin=45.76

.

Spatial Deviation for Payload (20) and Speed (3)

Spatial Deviation (in .001 inches)

-				
Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
	0	0	0	0
2	3.1	1.5	6	6.9180
3	5.3	3	11.5	13.013
4	5.5	3.9	10.1	12.143
5	7.5	4.3	19.9	21.696
6	10.2	5.6	27.6	29.952
7	12.7	6.2	36.6	39.233
8	18	7.4	56	59.285
9	19.8	8.3	60.3	64.007
10	22.2	9.1	66.1	70.319
11	24.7	9.3	72.7	77.342
12	25	10.1	70.9	75.853
13	26.7	11.2	75.5	80.861
14	28.2	11.3	82.7	88.103
15	29.9	11.6	88.1	93.755
16	30.5	11.5	94.5	99.963
17	32.9	11.2	101.3	107.09
18	34.3	11.1	105.1	111.11
19	35.3	11.7	111.1	117.15
20	36.3	11.1	113.6	119.77
21	38	12	121.3	127.67
22	39.7	11.2	124.5	131.15
23	40.3	11.3	130.3	136.85
24	41.5	12.1	134.6	141.37
25	42.7	12	144	150.67
26-	43.6	11.2	144.6	151.44
27	44.4	12.1	147.3	154.32
28	45.5	12.9	150.7	157.94
29	46.4	13	154	161.36
30	47.3	13	157	164.48

Note. @D=(@D1+@D2+...+@D30)/30=92.16 R=@Dmax-@Dmin=164.48

.

Spatial Deviation for Payload (20) and Speed (5)

Spatial Deviation (in .001 inches)

Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
 1	0	0	0	0
2	0.6	2.1	0.2	2.1931
3	1.4	9	2.5	9.4451
4	2.2	13.8	3.6	14.430
5	2.9	15.1	4.5	16.020
6	3.7	13.8	4.8	15.072
7	4.9	14.5	2.5	15.508
8	5.4	17.7	4	18.932
9	6.2	18.8	5.4	20.519
10	7.1	24	8.4	26.400
11	7.7	21.9	9	24.897
12	8.6	26.6	11	30.041
13	9.2	24.5	12.5	29.002
14	9.9	25	13.8	30.223
15	9.6	24.2	15.5	30.299
16	11.2	24.9	18.5	32.980
17	11.6	26.5	19.8	35.054
18	11.8	26.9	20.4	35.763
19	12.6	27.1	21.2	36.641
20	13.9	26.9	23.1	38.084
21	13.2	27.7	24.7	39.390
22	13.9	27.9	28.1	41.967
23	14.5	27 .9	28.9	42.706
24	14.9	28	32.7	45.555
25	15.4	31.1	33.5	48.235
26 ⁻	16.8	29.2	35.6	49.012
27	16.4	29.4	35.7	49.069
28	16.8	29	37.1	49.996
29	17.1	28.5	37.7	50.258
30	17.5	29.9	38.5	51.792

Note. @D=(@D1+@D2+...+@D30)/30=30.98 R=@Dmax-@Dmin=51.79

,

Spatialeviatiofor Payload (20) and Speed (7)

Spatialeviation (in .001 inches)

Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@y^2)
 1	0	0		0
2	-0.8	3.7	2.4	4.4821
3	-1.8	6.3	-2.2	6.9115
4	-2.9	9.7	-6.9	12.251
5	-2.8	13.9	-6.9	15.768
6	-1.9	18	-10.1	20.727
7	-2.8	22.6	-13.3	26.372
8	-2.5	25.9	-14.7	29.885
9	-1.7	29.6	-15.2	33.318
10	-1.3	33.3	-17	37.410
11	-0.6	36.5	-18	40.701
12	0.3	38.3	-17	41.904
13	0.7	41.6	-17.9	45.293
14	1.7	46.5	-18	49.891
15	2.7	47.5	-17.2	50.590
16	3.9	50.5	-15	52.824
17	4.9	52.1	-15.1	54.464
18	5.2	53.6	-13.4	55.493
19	6.5	54.9	-9.6	56.110
20	- 6.9	57.4	-8.9	58.494
21	7.5	57.4	-6.7	58.274
22	8.5	58.8	-5.3	59.647
23	9.2	63.4	-5	64.258
24	10	62.6	-3.6	63.495
25	10.8	62.6	-3.6	63.626
26-	11.2	63.9	-0.1	64.874
27	11.7	64.5	0.1	65.552
28	12.3	65.6	0.9	66.749
29	12.7	66.6	2.4	67.842
30	13.2	67.5	4.1	68.900

Note. @D=(@D1+@D2+...+@D30)/30=44.54 R=@Dmax-@Dmin=68.9

,

Spatial Deviation for Payload (65) and Speed (3)

Spatial Deviation (in .001 inches)

Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
1	0	0	0	0
2	2.6	-0.1	17.7	17.890
3	4.4	0.8	30.2	30.529
4	7.2	1.8	38.4	39.110
5	9.2	2.4	46.2	47.168
6	11	3.7	53.7	54.939
7	13	3.6	0	13.489
8	14.9	3	69.1	70.751
9	16.8	3.4	77.1	78.982
10	18.6	3.1	78.6	80.830
11	20	2.8	91.3	93.506
12	21.5	2.8	98.3	100.66
13	22.9	2.7	105.9	108.38
14	24.5	2.6	112.7	115.36
15	25.9	1.9	119.9	122.68
16	26.7	2.9	127.4	130.20
17	27.9	2.8	130.6	133.57
18	29.2	3.3	136.3	139.43
19	30.4	3.7	142.7	145.94
20	31.5	2.7	146.3	149.67
21	32.2	2.8	148.9	152.36
22	33.3	3	153.8	157.39
23	34.3	2.7	159.7	163.36
24	34.8	2.8	164.3	167.96
25	35.6	3.2	169.1	172.83
26 ⁻	36.4	2.9	171.7	175.53
27	37.2	3	175.9	179.81
28	37.8	2.8	179	182.96
29	38.5	2.6	182.2	186.24
30	39.4	2.3	184.2	188.38

Note. @D=(@D1+@D2+...+@D30)/30=113.33 R=@Dmax-@Dmin=188.38

.

Spatial Deviation for Payload (65) and Speed (5)

Spatial Deviation 9in .001 inches)

Cycle	@x	@у	@z	@SQRT(@x^2+@y^2+@z^2)
1	0	0	0	0
2	1.2	2.2	3.1	3.9862
3	1.4	3.9	7.1	8.2207
4	1.4	5.9	10.8	12.385
5	1.6	8.5	14	16.456
6	1.8	11.5	19.3	22.538
7	1.9	12.1	20.8	24.138
8	2	16.6	24.2	29.414
9	2	18.5	25	31.164
10	2.1	20.1	27.4	34.046
11	2.4	20.5	31.2	37.409
12	2.5	23	35.2	42.122
13	2.7	25.3	37.4	45.234
14	3	27.4	42.7	50.823
15	3	27	42.7	50.609
16	3.2	27.6	44.3	52.292
17	3.6	30.1	48.3	57.025
18	4	30.2	51.3	59.663
19	4.2	31.3	51.2	60.156
20	- 4.4	35.3	54.3	64.914
21	4.8	31.6	57	65.349
22	5	33.2	60.3	69.016
23	5.4	33	62.1	70.530
24	6	34	64.2	72.894
25	6.1	34	66.3	74.758
26-	6.1	36.5	68.3	77.681
27	6.3	34.4	70.4	78.607
28	6.9	33.7	73.6	81.241
29	7	34	75.2	82.825
30	7.2	39	75.5	85.282

Note. @D=(@D1+@D2+...+@d30)/30=48.72 R=@Dmax-@Dmin=85.28

.

Spatial Deviation for Payload (65) and Speed (7)

Cycle	@x	@у	@z	@SQRT(@x^2+@y^2+@z^2)
 1	0	0		0
2	3.5	2	18.4	18.836
3	4.9	5	27.6	28.474
4	5.8	6.5	33.5	34.614
5	6.4	8.2	37.5	38.915
6	7	9.1	40.7	42.288
7	7.6	10.3	44.4	46.208
8	8.1	10.1	48.4	50.101
9	8.4	11	50.9	52.748
10	11.5	12	63	65.155
11 .	12.5	15.3	69	71.772
12	13.5	14.1	74.3	76.821
13	14.4	15.3	78.4	81.166
14	15.4	15.9	83.5	86.384
15	16.4	19.6	87.7	91.347
16	17.4	17.1	92.3	95.469
17	18	17.6	94.6	97.892
18	18.3	21.6	98	102.00
19	18.5	19.9	99.3	102.95
20	<u> </u>	20	101	104.69
21	19.1	20.5	102.6	106.35
22	19.4	21.2	104.4	108.28
23	19.7	21.6	107.2	111.11
24	20	21.6	107.9	111.84
25	20.4	22	108.6	112.66
26-	20.8	22	111.5	115.53
27	21.3	23.6	113.6	117.96
28	21.3	23.8	115.7	120.02
29	21.8	23.6	118	122.29
30	21.9	23.6	118.6	122.89

Spatial Deviation for Payload (65) and Speed (7)

Note. @D=(@D1+@D2+...+@D30)/30=81.23 R=@Dmax-@Dmin=122.89

.

spatial Deviation for Payload (130) and Speed (3)

Spatial Deviation (in .001 inches)

-					
Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2	
 1	0	0	0	0	
2	-3.3	7	-4.6	9.0027	
3	-2.8	11.5	1.3	11.907	
4	-1.9	15.2	9.2	17.868	
5	-1.3	18.6	16.2	24.7	
6	0.2	20.1	25.3	32.313	
7	0.9	22.4	30.2	37.611	
8	1.2	24.2	37.1	44.311	
9	1.8	25.2	43.1	49.958	
10	2.2	26.1	45.5	52.500	
11	2.6	25.9	47.3	53.989	
12	-1.3	27.1	33	42.721	
13	4.8	29	59.1	66.006	
14	0.3	29	42.2	51.204	
15	4.4	31	59.1	66.881	
16	0.2	31.9	43.2	53.701	
17	0.2	30.5	43.3	52.963	
18	0.1	31.1	43.1	53.149	
19	0.1	31.6	43	53.362	
20	- 0.4	31.5	45.3	55.176	
21	4.8	32	63.1	70.912	
22	4.5	33.2	60.5	69.157	
23	4.4	32.5	60	68.378	
24	4.4	33.2	60.1	68.801	
25	3.8	33.5	60.9	69.609	
26-	3.8	33.2	59.2	67.980	
27	4.5	33	61.1	69.587	
28	3.8	33.1	59.7	68.367	
29	3.9	33.1	42.9	54.325	
30	4.7	33.1	43.1	54.546	

Note. <u>@D</u>=(@D1+@D2+...+@D30)/30=49.67 R=@Dmax-@Dmin=70.91

.

Spatial Deviation for Payload (130) and Speed (5)

Spatial Deviation (in .001 inches)

Cycle	@x	@у	@z	@SQRT(@x^2+@y^2+@z^2)
1	0	0	0	0
2	5.9	4.3	16.7	18.226
3	8.2	9	24.7	27.537
4	4.5	13.3	26.7	30.166
5	-0.3	16.9	22.8	28.382
6	-2.5	21.5	23	31.583
7	-2.7	26.4	27.4	38.144
8	0.6	30.3	42.1	51.873
9	0.9	33.4	48.1	58.566
10	1.4	33.4	54	63.509
11 -	1.2	39.6	59.5	71.483
12	1.7	42.4	62.5	75.544
13	1.5	44.6	63.6	77.694
14	0.2	44.6	65.4	79.160
15	0.1	47.6	68.6	83.496
16	-0.1	49.6	70.5	86.199
17	-0.3	51.5	72.5	88.930
18	-0.3	53.4	74.6	91.743
19	-0.5	55	75.1	93.087
20	-0.3	58.4	79	98.242
21	-0.5	57.5	79.7	98.278
22	-0.5	58.5	81.6	100.40
23	-0.4	58.6	82.9	101.52
24	-0.2	59.3	85.3	103.88
25	0	60.5	87.5	106.37
26-	-0.2	61.4	87.5	106.89
27	0	61.7	89.6	108.78
28	-0.3	61.7	89.2	108.46
29	-0.2	61.6	91.3	110.13
30	-0.2	62.5	90.6	110.06

Note. @D=(@D1+@D2+...+@D30)/30=74.93 R=@Dmax-@Dmin=110.14

Spatial Deviation for payload (130) and Speed (7)

Spatial Deviation (in .001 inches)

 $@SQRT(@x^2+@y^2+@z^2)$ Cycle @z @x @y 0 0 0 1 0 2 0 4.4 1.8 4.7539 5 3 9.4 18.4 21.258 4 6.6 12 27.3 30.542 5 7.7 33.6 37.836 15.6 6 8.6 17.9 40.2 44.837 7 9.2 20.8 44 49.530 8 9.9 22.9 48.7 54.718 9 10.6 27.5 52.7 60.381 10 11.2 30.2 57.3 65.732 11 31.9 64.4 72.895 12.2 12 34.6 80.837 13.5 71.8 13 14.2 37.4 77.3 87.038 14 15.4 39 84.9 94.689 15 16.8 41.4 93.4 103.53 16 17.9 43.9 **99.**7 110.39 17 45.7 116.40 18.8 105.4 18 26.8 47.5 134.3 144.95 19 27 50.3 137.2 148.60 20 27.1 50.4 140.9 152.07 21 27.1 52.5 142.9 154.63 22 27.3 53.9 144.2 156.34 23 27.5 55.3 146.7 159.17 24 27.5 54.4 147.6 159.69 25 27.8 162.15 55.5 149.8 164.97 26-28.1 55.5 152.8 27 28.4 57.4 155.3 167.98 28 28.7 **57.9** 157.1 169.87 29 59.4 28.9 159.3 172.45 30 29.2 60.5 161.5 174.91

Note. @D=(@D1+@D2+...+@D30)/30=104.11 R=@Dmax-@Dmin=174.91

.

Spatial Deviation for payload (180) and Speed (3)

Spatial Deviation (in .001 inches)

Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
	0	0	0	0
2	1.5	2.9	15.6	15.938
3	2.1	4.3	28.6	28.997
4	2.9	5.4	43.1	43.533
5	3.2	5.4	45.4	45.831
6	3.4	6.1	49.6	50.089
7	3.2	9	49.3	50.216
8	3.2	9.1	49.3	50.234
9	2.8	10.9	47.3	48.620
10	3.1	11.9	48.8	50.325
11	3.4	12.4	50.6	52.208
12	3.6	12.1	52.1	53.607
13	3.8	11.4	54.1	55.418
14	3.8	13.4	52.5	54.316
15	3.5	13.9	49.1	51.149
16	3.5	13.9	45.1	47.323
17	3.5	13.4	48.3	50.246
18	3.4	13.9	45.1	47.315
19	3.4	13.9	45.3	47.506
20	- 3.4	14.1	46.6	48.805
21	3.5	13.9	45.6	47.799
22	3.3	13.6	46.6	48.656
23	3.4	14.1	45.3	47.565
24	3.3	15	42.2	44.908
25	3.1	13.8	44.1	46.312
26-	3.2	14	45.1	47.331
27	3	14.4	41.4	43.935
28	3.1	15	42	44.705
29	2.9	14.6	41.6	44.182
30	3	14.8	38.6	41.448

Note. <u>@D</u>=(@D1+@D2+...+@D30)/30=44.95 R=@Dmax-@Dmin=55.42

.

Spatial Deviation for Payload (180) and Speed (5)

....

Spatial Deviation (in .001 inches)

-				
Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
	0	0	0	0
2	0.2	5.8	0	5.8034
3	0.2	3.8	3.6	5.2383
4	0.2	1.3	-9.4	9.4915
5	0.4	1.6	1.4	2.1633
6	0.3	1.7	0	1.7262
7	0.4	1.3	1.4	1.9519
8	0.4	6.7	0.6	6.7386
9	0.5	6.9	0.4	6.9296
10	0.5	6.3	-0.5	6.3395
11	0.5	3.7	-0.9	3.8405
12	0.3	3.3	-2.3	4.0336
13	0.3	2.9	-1.4	3.2341
14	0.3	3	-2.3	3.7920
15	0.3	2.2	-1.4	2.6248
16	0.5	2.3	1.5	2.7910
17	0.4	7.3	-2	7.5795
18	0.4	3.7	-0.5	3.7549
19	0.3	3.8	0	3.8118
20	0.3	3.7	-0.5	3.7456
21	0.6	3.6	1.3	3.8742
22	0.6	3.5	0.6	3.6013
23	0.6	7.3	-1.1	7.4067
24	0.4	6.7	-0.6	6.7386
25	0.4	4.8	-0.6	4.8538
26-	0.4	4	1.4	4.2567
27	0.3	4.8	1.3	4.9819
28	0.3	4.3	-0.6	4.3520
29	0.3	4.7	-0.5	4.7360
30	0.5	6.4	0.5	6.4389

Note. @D=(@D1+@D2+...+@D30)/30=4.56 R=@Dmax-@Dmin=9.49

.

Spatial Deviation for Payload (250) and Speed (3)

Spatial Deviation (in .001 inches)

Cycle	@x	@y	@z	@SQRT(@x^2+@y^2+@z^2)
 1	0	0	0	0
2	-0.2	1.1	0.5	1.2247
3	-0.7	2.8	7.7	8.2231
4	-1.2	4.7	14	14.816
5	-1.5	4.4	16.7	17.334
6	-1.7	4.9	18.5	19.213
7	-1.7	5.4	21.6	22.329
8	-1.5	5.3	21.5	22.194
9	-1.4	5.8	22.4	23.181
10	-1.1	6	20.6	21.484
11	-0.9	6.4	20.3	21.303
12	-0.9	7	17.4	18.776
13	-0.7	8	14.7	16.750
14	-0.7	8.5	13.1	15.631
15	-0.6	8.9	11.5	14.554
16	-0.6	10.7	12.1	16.163
17	-0.5	9.9	9.7	13.869
18	-0.9	9.9	9.3	13.612
19	-0.8	10.3	8.8	13.570
20	-0.4	10.7	9.9	14.582
21	-0.3	10.9	8.2	13.643
22	-0.2	11.7	7.4	13.845
23	-0.6	12.9	7.6	14.984
24	-0.8	12.7	4.7	13.565
25	11.6	12.9	6.6	18.561
26 ⁻	11.6	13	5.3	18.211
27	11.6	13.6	3.5	18.214
28	11	13.8	2.5	17.823
29	10.7	13.7	1.6	17.456
30	11	-22	1	24.617

Note. @D=(@D1+@D2+...+@D30)/30=17.51 R=@Dmax-@Dmin=24.62

Cycle

+

Spatial Deviation for Payload (65) and Speed (5)

Spatial Deviation (in .001 inches) _____ (ax) (ay) (az) $(ax^{2}+(ay^{2}+(az^{2})))$

1	0	0	0	0
1 2 3	0.5	1.8	3.1	3.6193
3	1	2.2	6.1	6.5612
4	1.8	4.1	7.4	8.6492
5	2.4	4.2	8.2	9.5205
6	2.8	6.6	8	10.742
7	3.5	7.4	8.6	11.873
8	4	11	9.5	15.074
9	4.2	14.2	10	17.868
10	4.7	16.4	11.8	20.743
11	4.8	18.7	12	22.731
12	5.3	21.7	15	26.906
13	5.4	23.1	16.2	28.726
14	5.6	24	18	30.518
15	5.4	26.1	16.2	31.189
16	5.5	23.4	20.8	31.787
17	6	26.2	20.5	33.803
18	6	26.2	21.1	34.170
19	7.4	20.2	24	32.230
20	3.1	42.3	0	42.413
21	3	51.3	1	51.397
22	4.4	33.2	5.9	34.006
23	8	21.7	21.3	31.441
24	8.2	23.7	24.3	34.920
25	8.4	26.3	24.9	37.178
26 ⁻	8.2	27.8	26.2	39.070
27	7.6	38	20.1	43.655
28	7.6	36.2	22.1	43.088
29	7.7	38.1	23	45.165
30	7.8	35.7	22.5	42.913
31	7.4	35.3	23.4	42.993
32	7.4	36.8	23.5	44.286
33	8	38.3	25.9	46.922
34	8.3	36.2	26.3	45.508
35	8.2	35.6	22.2	42.748

Table 18 (Continued)

-

w.

.

Spatial Deviation for Payload (65) and Speed (5)

.

٠

Spatial Deviation (in .001 inches)

Cycle	@x	@y	@z	+@SQRT(@x^2+@y^2+@z^2)
 36	8.2	34.1	23.1	41.995
37	8.1	38.6	25.1	46.750
38	8.7	36.4	23.6	44.244
39	8.4	37.3	22	44.111
40	8.4	35.1	24.6	43.677
41	8.6	36.5	27	46.208
42	8.6	34.2	25	43.227
43	8.6	35.2	25.5	44.308
44	8.5	33.6	27	43.934
45	8.6	36.6	26.8	46.170
46	8.8	36.2	26.9	45.950
47	8.9	35.4	26.4	45.048
48	9	34.2	25	43.308
49	8.9	34.4	25	43.446
50	9	35.2	25	44.102

.

Spatial Deviation for Payload (65) and Speed (7)

-

Spatial Deviation (in .001 inches)

Cycle	@x	@y	@z	+@SQRT(@x^2+@y^2+@z^2)
1	0	0	0	0
2	0.4	1.4	5.7	5.8830
3	0.6	3	9	9.5057
4	1.8	4.9	8	9.5524
5	2.2	3.1	11.8	12.397
6	2.4	3.6	14.5	15.131
7	2.5	4	13.3	14.111
8	2.9	3.7	13.9	14.673
9	3	4.4	14.7	15.634
10	3.2	4.9	13.6	14.805
11	3.4	9	10.8	14.463
12	3.6	10.7	9.7	14.884
13	3.7	9.9	10.7	15.039
14	4	10.7	10	15.181
15	3.9	11.4	6.8	13.835
16	4.1	11	7.5	13.930
17	4.4	12.3	6.8	14.727
18	4.4	13.3	6.3	15.360
19	_ 4.4	13.9	6.6	16.004
20	4.4	12.7	6.8	15.062
21	4.6	14.7	8.2	17.449
22	4.5	13.4	9.8	17.200
23	4.8	13.4	9.3	17.002
24	4.9	15.7	10.6	19.566
25	4.9	15.9	10.5	19.674
26 ⁻	5	14.8	10	18.548
27	5.1	15.1	9.8	18.709
28	5.1	17.8	9.7	20.903
29	5.2	17.1	9 .7	20.335
30	5.3	18.5	9.6	21.505
31	5.4	17.7	9.6	20.847
32	5.4	17.9	9.8	21.109
33	5.5	18.4	9.3	21.337
34	5.6	19.4	9.7	22.401
35	5.7	18.1	9.7	21.311

Table 19 (Continued)

Ξ.

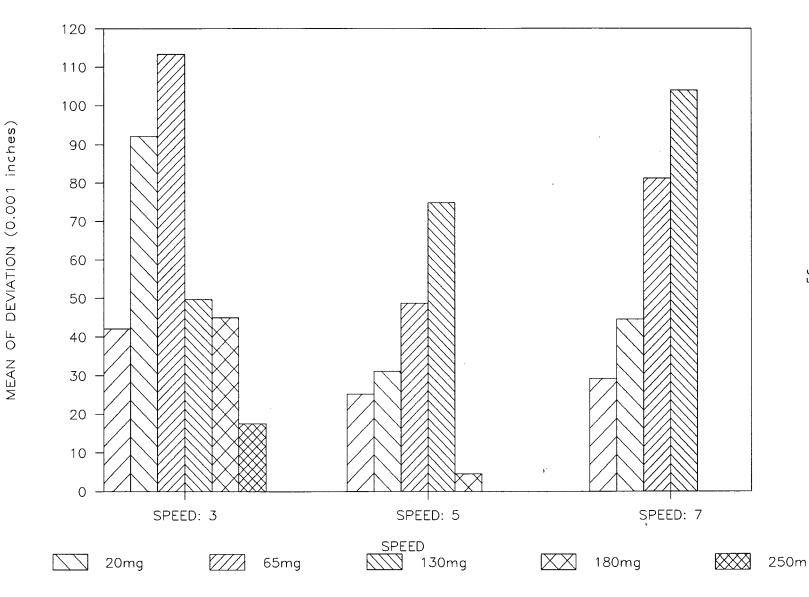
.

.

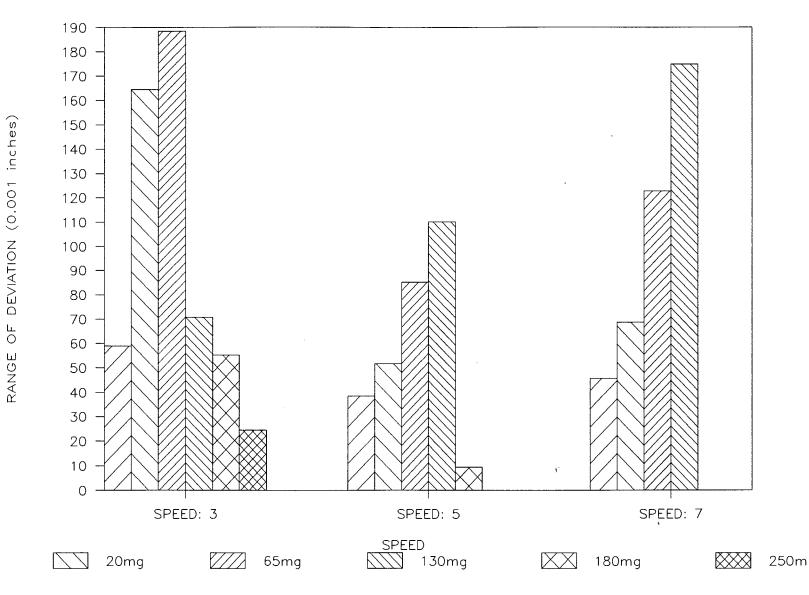
.

Spatial Deviation for Payload (65) and Speed (7)

Spatial Deviation (in .001 inches)


Cycle	@x	@y	@z	+@SQRT(@x^2+@y^2+@z^2)
36	5.7	 17.8		21.389
37	5.8	17.7	9.1	20.730
38	5.9	18.7	10.7	22.338
39	6	18.9	10.6	22.484
40	6	17.9	10	21.363
41	6.1	16.9	9.9	20.514
42	6.1	18.2	10.8	22.024
43	6.2	17.8	10.9	21.773
44	6.2	17.4	11	21.498
45	6.3	17. 9	11	21.933
46	6.4	18.1	10.8	22.027
47	6.4	17.9	12.3	22.641
48	6.4	18	11.9	22.507
49	6.7	17	11.8	21.751
50	6.4	17.9	11.9	22.427

Analysis of Mean Deviation "@D" and Range of Deviation "R"


The "@D" and "R" were arranged into two groups. One group of data was organized to show the affect of different speeds on repeatability (see Figure 3 and Figure 4). For the same payload, both high speed (7) and lower speed (3) caused higher spatial position deviation than medium speed (5). This means that the medium speed could have better repeatability than higher speed or lower speed.

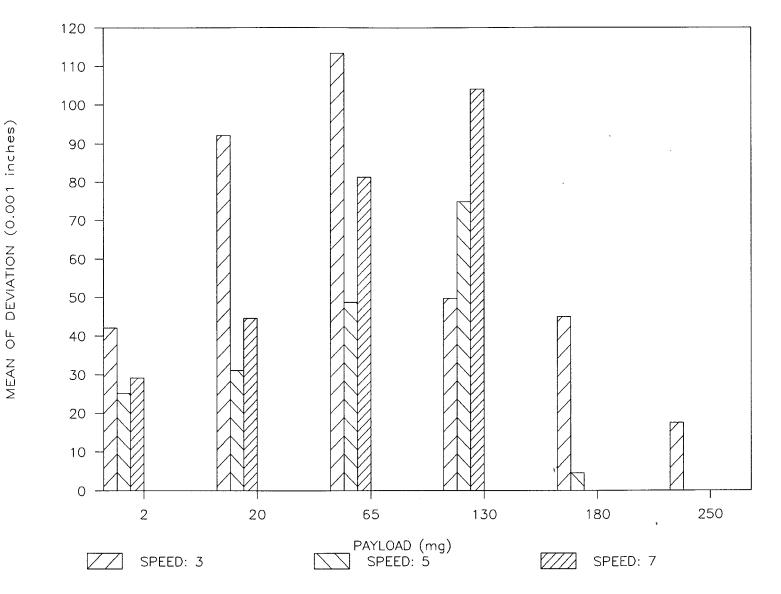
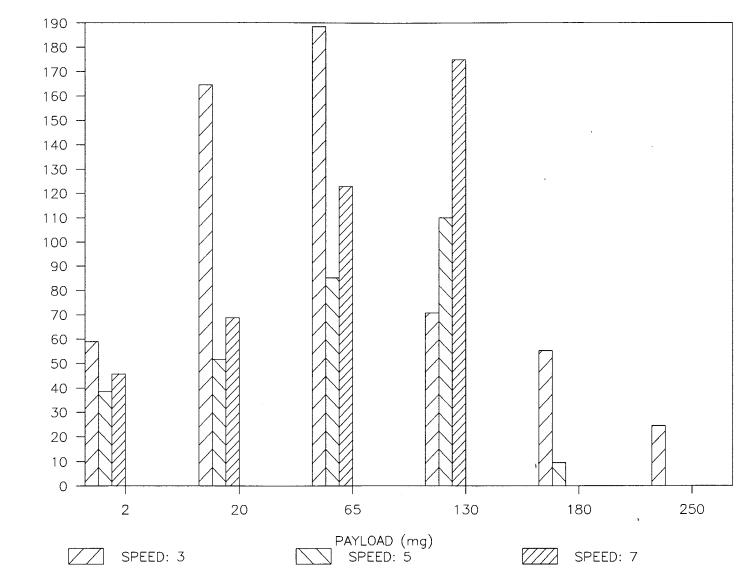

Another group was organized to show the effect of different payloads on repeatability (see Figure 5 and Figure 6). It was found that under the same speed, heavier payload caused greater spatial position deviation, i.e., the heavier the payload, the lower the repeatability. Two heavy payloads: 180gm and 250gm gave an opposite result. Because it was very difficult to read the readings from dial-indicators at the beginning of the test, the researcher had to begin recording after few cycles. However, the researcher observed that the first few cycles of high payload had greater deviation, then quickly came to a modest change rate. Both "QD" and "R" can give the same conclusion.

FIGURE 3. Mean Of Deviation (@D)



,

FIGURE 6. Range Of Deviation (R)

RANGE OF DEVIATION (0.001 inches)

Analysis of Change Rate of Deviation "b"

and Coefficient of Correlation "r"

The analysis of "b" and "r" can give readers an idea about the spatial position deviation change during the cycle period and how these deviations were distributed. The "b" showed the direction of change, and the "r" showed the correlation of data. Therefore, "b" and "r" represented how the repeatability changed. Table 18 and Table 19 summarized "b" and "r" as shown in Appendix C. It is known that r=1 represents high positive correlation, and r=0 represents no correlation. Payloads of 2-130 gm exhibited higher correlation while the higher payloads of 180gm and 250gm yielded lower correlation results. This means that the repeatability of higher payloads fluctuated. Slope "b" values in table 18 demonstrated that the lower speed (3) had the highest change rate, and medium speed (5) had the lowest change rate. This also indicated that medium speed had good repeatability. Figure 7 to Figure 15 show the whole view of repeatability changes.

TABLE 20:

Summary of the Change Rate of Deviation Slope

SPREDS	PAYLOAD (GRAMS)						
	2	20	65	130	180	250	
3	1.98	5.82	6.41	1.85	0.45	0.2	
5	1.20	1.65	2.88	3.52	0.04		
7	1.50	2.30	3.86	6.36			

Note: Unit = 0.001 inches.

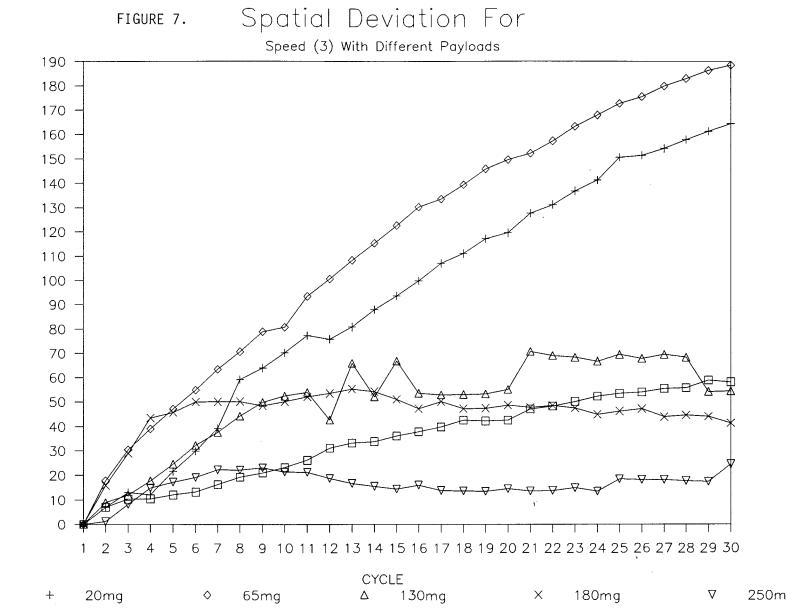
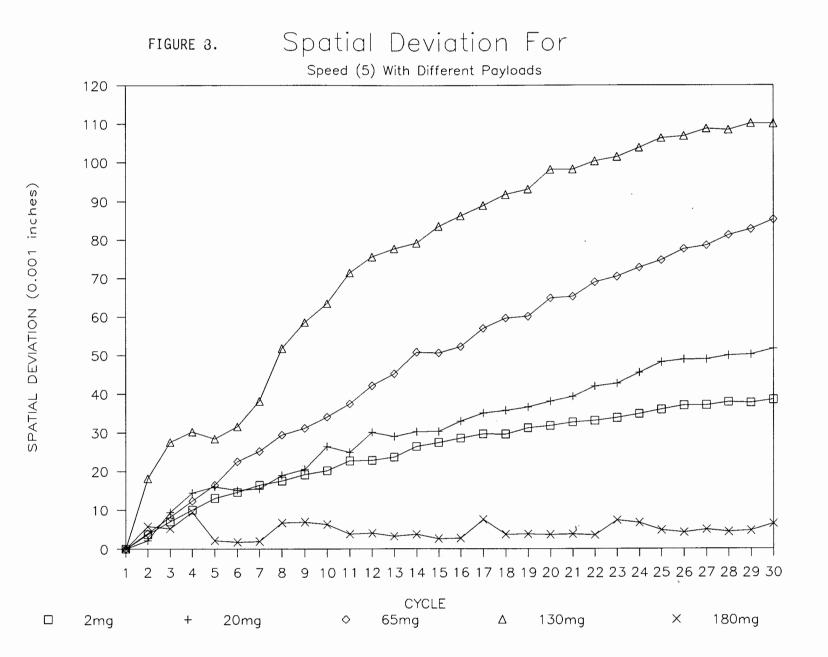
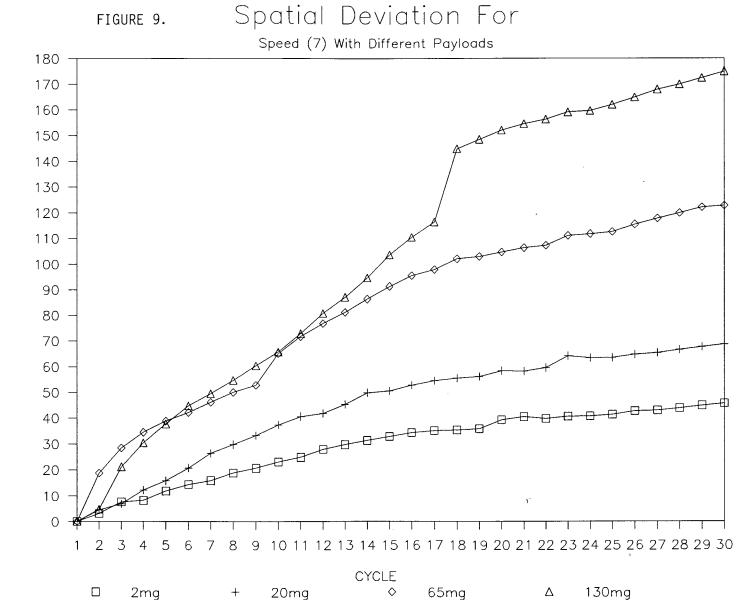

The rows show the payload's effect on the repeatability with a certain speed. The columns show the speed's effect on repeatability with a certain payload.

TABLE 21:

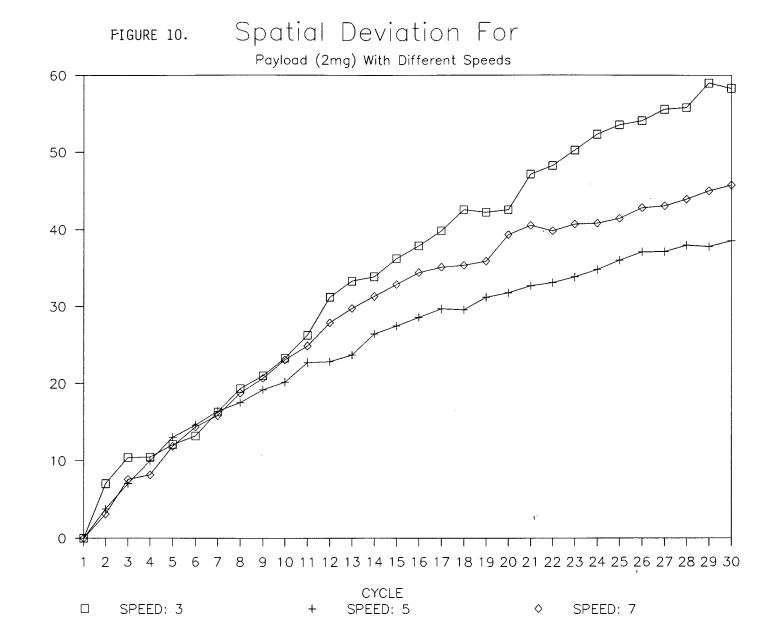
-.


Summary of the Coefficient of Correlation "r"

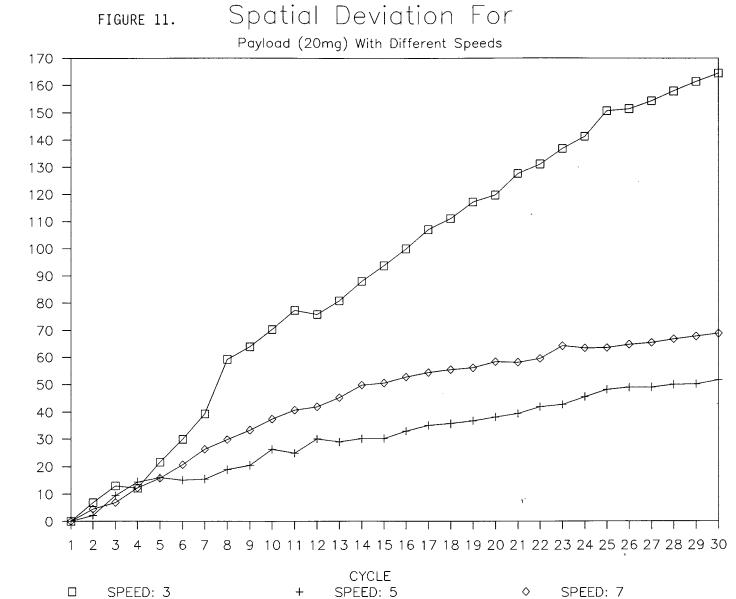
SPEEDS	PAYLOAD (GRAMS)							
	2	20	65	130	180	250		
3	0.99	0.99	0.98	0.82	0.35	0.3		
5	0.97	0.98	0.99	0.95	0.16			
7	0.96	0.96	0.96	0.98				


.

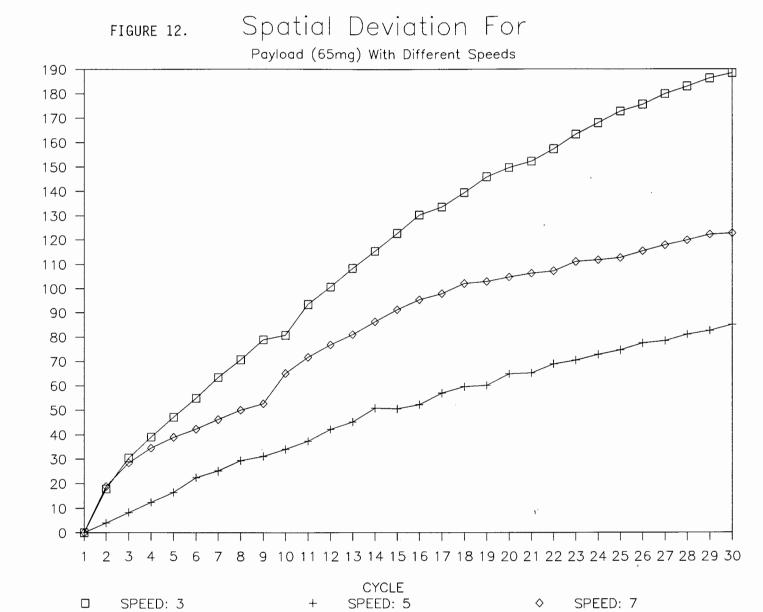
SPATIAL DEVIATION (0.001 inches)


63

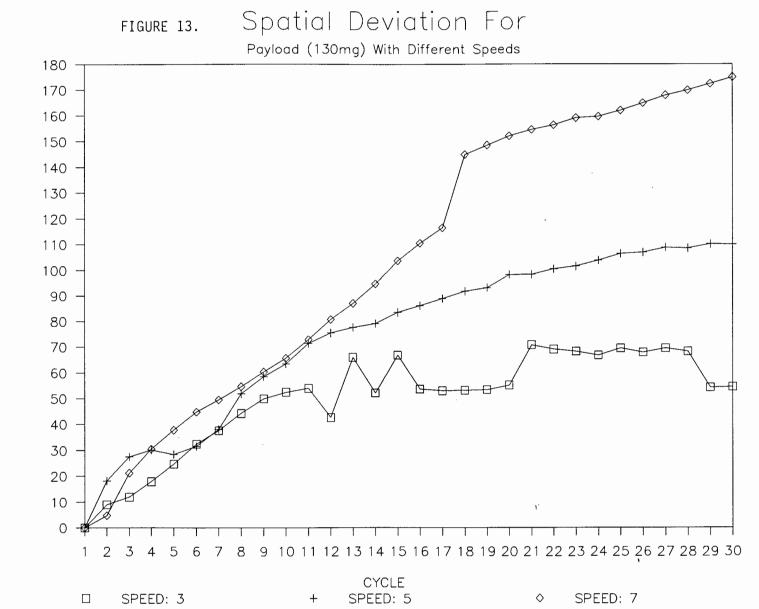
.


64

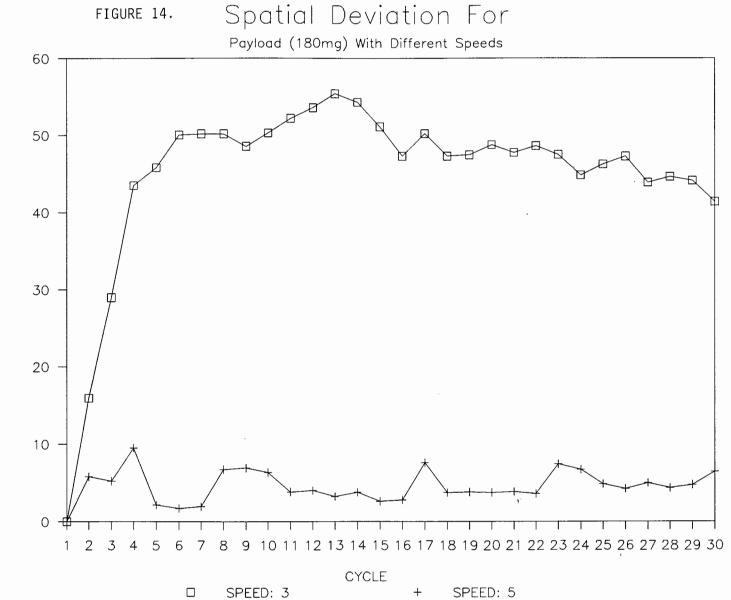
.


.

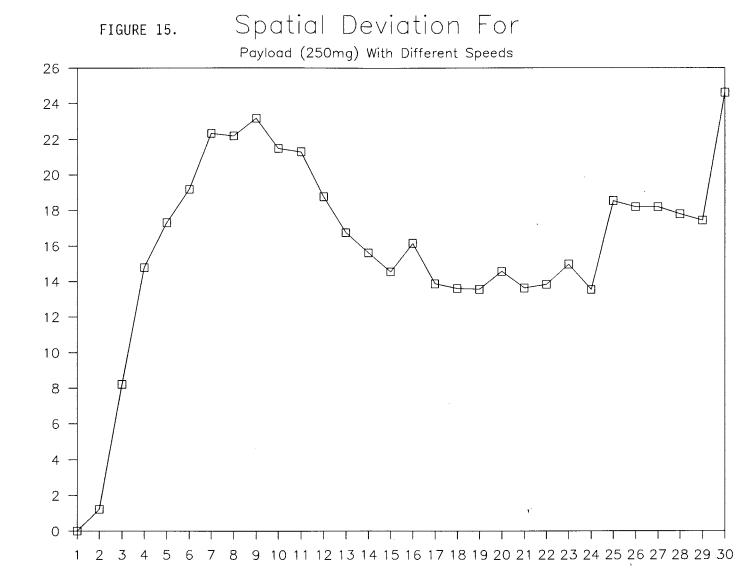
SPATIAL DEVIATION (0.001 inches)


66

.


67

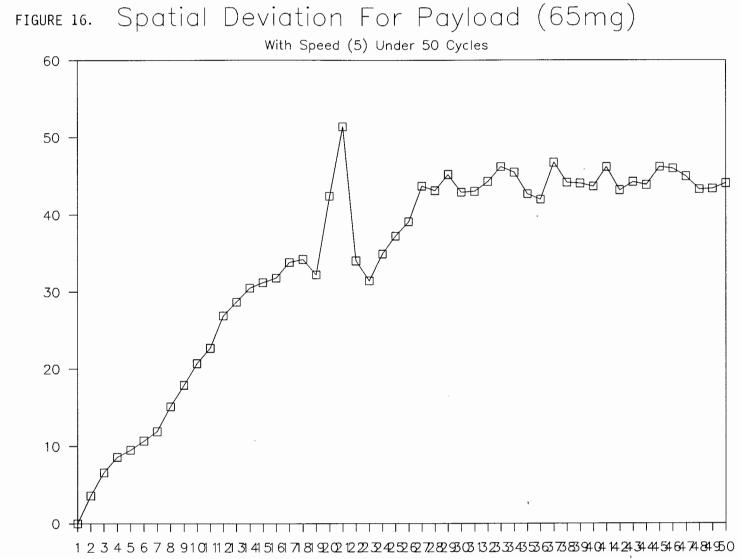
•


63

.

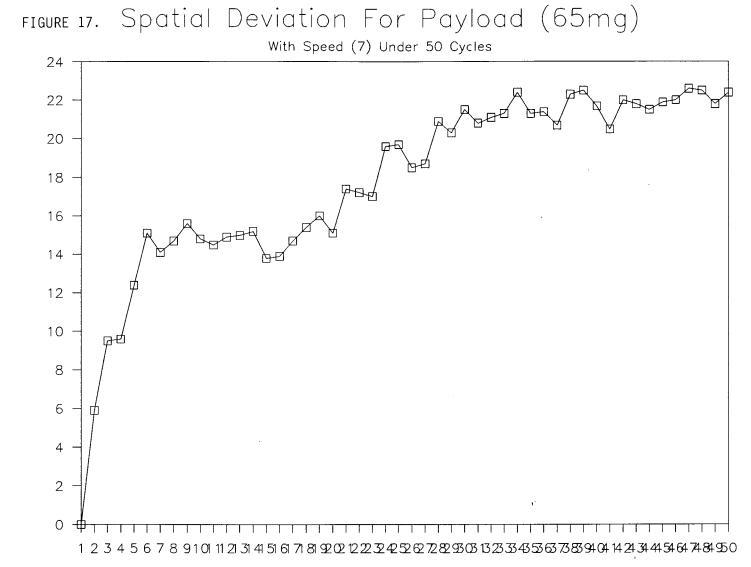
,

•


,

CYCLE

.


From Figure 7 to Figure 15, it can be seen that during the thirty cycles, the spatial deviation is always going up. Figure 16 and Figure 17 show the spatial deviation change of payload 65 with speed 5 and speed 7 during 50 cycles.

In Figure 16, the line becomes smoothly flat after 40 cycles. In Figure 17, during the last few cycles, the spatial deviation value have almost no change. These results suggest that the spatial deviation will tend to have low variability as the number of cycles increases. This limitation depends on the configuration or the structure of robots. The driving and the transmission system can especially affect this change of spatial deviation or repeatability. In this study, the researcher used the Microbot. It is equipped with a cable-type transmission system. Under a certain load and speed, this cable is exerted by load, weight or inertial force. Even though its length can be extended, it should have a certain limitation up to which no more significant change occurs.

SPATIAL DEVIATION (0.001 inches)

•

CYCLE

.

CHAPTER VI

SUMMARY, CONCLUSION AND RECOMMENDATION

Summary

Industrial robots have typically been used as general purpose positioning devices. In such a situation, the robot is programmed to move through a sequence of positions so that a tool or part held by the robot completes a desired task on a workpiece. The most important requirement for successful accomplishment of its task is the repeatability with which it can return to the taught positions and with which successive workpieces can be presented to it (Taylor, 1985).

The purpose of this research was to identify key factors that can affect the accuracy and repeatability of the Microbot TeachMover robot. There are various factors which may affect the repeatability of a given robot. The problem of this research was to determine how the factors of payload and speed affect the repeatability of a Microbot TeachMover robot. In this study, the repeatability was analyzed in terms of "QD",

"R", "r" and "b" ("@D" = spatial deviation; "R" = range of spatial deviation; "r" = coefficient of correlation; and "b" = changing rate of the spatial deviation or slope.

This research was conducted in the CAM Lab of the Industrial Technology Center, University of Northern Iowa. The Microbot TeachMover Robot that was used for this research had been used for about five years, which is a limitation of this study.

The robot program was developed using the standard teach pendent, and stored on a 5 1/4" floppy disc. The same program was used repeatedly with different payloads and different speeds. There were fifteen pairs of payload and speed run under thirty cycles, and two pairs of payload and speed run under fifty cycles. Three dial-indicators were set together to measure the position deviation on X, Y, and Z axis separately. Then the spatial deviation @D was calculated with the formula: @D = SQRT {(@X)^2+(@Y)^2+(@Z)^2}. "R" was calculated with the formula: R = @D(maximum)-@D(minimum).

In order to separately analyze the effect of payload and speed on repeatability, the " $\overline{\text{(D)}}$ " and "R"

were arranged into two groups. One group of data was organized to show the effect of different speeds on repeatability. For the same payload, both high speed and lower speed caused higher spatial deviation than did the medium speed. Another group was organized to show the effect of different payloads on repeatability. It was found that under the same speed, heavier payload caused greater spatial position deviation. The payload 65 with speed 5 and 7 were tested under fifty cycles. These results showed that after certain cycles, the deviation or the repeatability become stable, while they always increase before thirty cycles.

All of the results from this research can add important information about the repeatability of robots. "It will require joint efforts from users, manipulators, and researchers to achieve the most productive use of [an] accurate robot system" (Day, 1988, p. 9).

Discussion and Conclusion

From previous analysis, it was concluded that medium speed and light payload resulted in better repeatability. When the robot held heavier payload and ran at low speed or at high speed, the repeatability

became worse. The repeatability (or the spatial deviation in this study) changes cycle by cycle. But up to a certain degree (or certain cycles), there was almost no change in repeatability.

According to the physical configuration, the Microbot used for this study falls into the articulating configuration. It has five degrees of freedom, and five axes provide its basic motions. DC stepper-motors of the open-loop type are used to drive each of the axes of motion.

The mechanical transmissions used in the Microbot can be categorized into cable type transmissions. All motors are connected to a common drive shaft, and then the cables are connected through gears to drive different elements of the robot. Backlash and unstable characteristics are main disadvantages of the cables which contribute much to inaccuracy and poor repeatability.

Dynamic parameters such as force, gravity, and inertia are important in accurate robot controls. Structurally, robots are designed to be more flexible. Being flexible, robots will deflect under the load and under their own weight. There are several components

in robots that contribute to flexibility, such as link structures, bearings, and drive train components. They all contribute to robot inaccuracy when payloads change at the robot end effector. The heavier the payload, the more the inaccuracy. The researcher also believes that when speed becomes slower for the same payload, the time the payload is exerted on the robot will be longer, and will create more inaccuracy or irrepeatability. But when speed is high, it will come to another problem. The higher the speed, the larger the inertial force accumulates and the worse its repeatability.

Inertial parameters of robots play a role in trajectory accuracy and velocity accuracy of robots. With inertia and flexibility in a dynamic system, there are resonance or natural liberation. The robot shakes at or near its natural frequencies. When a robot holds a heavy payload, the amplitude of vibration becomes low. This is why heavy payload in this study showed lower "b".

The friction parameters of robots also contribute to the robot's inaccuracy and poor repeatability. Hysteriosis shows up when the drive cycled back and

forth, thus contributing errors in omnidirectional repeatability, and accuracy. All friction parameters dissipate energy and contribute to robot inaccuracy.

In order to build a high-quality robot to meet the more rigorous requirements in the modern industrial environment, people should do more patient work on the improvement of robot, and reveal more and more secrets of robots.

Rcommendations

The following recommendations were suggested as a result of this research project:

- The variable program complexity should be considered when conducting future studies.
- Researching on the repeatability of industrial robots should be conducted in the manufacturing system.
- Researchers could use more precise measurement techniques, such as the laser tracking system, to study path repeatability rather than point repeatability.
- 4. Different types of robots should be studied to compare their repeatability.
- 5. Research should focus on a specific part of the

robot, such as base rotation, shoulder flex, elbow flex, wrist pitch or wrist roll, to study how this part affects the repeatability of a robot.

REFERENCES

- Asfahl, C. R. (1985). <u>Robots and Manufacturing</u> <u>Automation</u>. New York: John Wiley & Sons.
- Andeen, G.B. (1988). <u>Robot Design Handbook</u>. New York: McGraw-Hill Book Company.
- Atkeson, C.G., An, C.H. & Hollerbach, J.M. (1986). Estimation of inertial parameters of manipulator loads and links. In O.D. Faugeras & Georges Giralt (ed.), <u>Robotics Research</u> (pp. 221-228) London: The MIT Press.
- Day, C. P. (1988). Robot accuracy issues and methods of improvement. <u>Robotics Today</u>, <u>1</u>, 1-9.
- Heath, L. (1986). <u>Microbot</u>. Sunnyvale, CA: Microbot, Inc.
- Heath, L. (1985). <u>Fundamentals of Robotics: Theory and</u> <u>Applications</u>. Virginia: Reston Publishing Company.
- Hollerbach, J. M. (1982). Dynamics. In Michael Brady, John M. Hollerbach, Timothy L. Johnson, Tomas Lozano-Perez & Matthew T. Mason (ed.), <u>Robot Motion</u> (pp. 51-71). Cambridge: The MIT Press.
- Holzbock, W. G. (1986). <u>Robotic Technology</u>. New york: Van Nostrand Reinhold.
- Hunt, V. D. (1990). <u>Understanding Robotics</u>. New York: Academic Press, INC.
- Kafrissen, E & Stephans, M. (1984). Industrial Robots and Robotics. Virginia: Reston Publishing company, Inc.
- Koren, Y. (1985). <u>Robotics for Engineers</u>. New York: McGraw-Hill Book Company.
- Mason, M.T. (1985). <u>Robot Hands and the Mechanics of</u> <u>Manipulation</u>. London, England: The MIT Press.

- McDonald, A. C. (1986). <u>Robot Technology: Theory</u>, <u>Design and Applications</u>. New Jersey: Prentice-Hall.
- N-Nagy & Siegler, A. (1987). <u>Engineering Foundations of</u> <u>Robotics</u>. NJ: Prentice-Hall International.
- Poole, H. H. (1989). <u>Fundamentals of Robotics</u> <u>Engineering</u>. New York: Van Nostrand Reinhold.
- Rivin, E.I. (1988). <u>Mechanical Design of Robots</u>. New York: McGraw-Hill Book Company.
- Stonecipher, K. (1989). Understanding the complex components of robot systems. In Ken Stonecipher (ed.), <u>Industrial robotics</u> (pp.1-33). Indiana: Howard W. Sams & Company.
- Taylor, R.H.; Hollis, R.L.; Lavin, M.A. (1985). Precise manipulation with endpoint sensing. <u>IBM</u> <u>Journal of Research and Development, 29</u>, 363-376.
- Tracking system measures continuous path robot motions (1985). <u>Production Engineering</u>, <u>32</u>, 15.
- Vukobratovic, M & Potkonjak, V. (1985). Scientific Fundamentals of Robotics 6: Applied Dynamics and CAD of Manipulation Robots. New York: Springer-Verlag.

APPENDIX A

•

-,

÷

.

The Program of Microbot for this Research

PROGRAM FOR SPEED 3

STEP COMMAND OPERANDS

.

.

-

0	MOVE	183,0,0,0,0,0,0
1	PAUSE	12
2	MOVE	183,-51,-361,73,0,0,73
3	MOVE	183,-51,-873,264,0,0,264
4	MOVE	183,-51,-873,578,385,385,578
5	MOVE	183,1763,-873,578,385,385,578
6	MOVE	183,1763,-1183,-240,168,168,-240
7	MOVE	183,-1752,-1183,-240,168,168,-240
8	MOVE	183,-1752,-2009,-1297,-412,-412,-1297
9	MOVE	183, -14, -2009, -1297, -412, -412, -1297
10	MOVE	183,-14,-915,542,405,405,542
11	MOVE	183,-14,-915,542,1151,-341,542
12	MOVE	183,-14,-915,542,68,742,542
13	MOVE	183,-14,-915,542,425,385,542
14	MOVE	183,1743,-915,542,425,385,542
15	MOVE	183,1743,-1605,0,425,385,0
16	MOVE	183,-1707,-1605,0,425,385,0
17	MOVE	183,-1707,-817,674,408,368,674
18	MOVE	183,-18,-817,674,408,368,674
19	MOVE	183,-18,-817,674,731,45,674
20	MOVE	183,-18,-817,674,-38,814,674
21	MOVE	183,-18,-817,674,433,343,674
22	MQVE	183,-18,-699,276,36,-54,276
23	MOVE	183,-52,-366,83,-19,1,83

PROGRAM FOR SPEED 5

STEP COMMAND OPERANDS

.

e

.

0	MOVE	183,0,0,0,0,0,0
1	PAUSE	12
2	MOVE	221,-51,-361,73,0,0,73
3	MOVE	221,-51,-873,264,0,0,264
4	MOVE	221,-51,-873,578,385,385,578
5	MOVE	221,1763,-873,578,385,385,578
6	MOVE	221,1763,-1183,-240,168,168,-240
7	MOVE	221,-1752,-1183,-240,168,168,-240
8	MOVE	221,-1752,-2009,-1297,-412,-412,-1297
9	MOVE	221,-14,-2009,-1297,-412,-412,-1297
10	MOVE	221,-14,-915,542,405,405,542
11	MOVE	221,-14,-915,542,1151,-341,542
12	MOVE	221,-14,-915,542,68,742,542
13	MOVE	221,-14,-915,542,425,385,542
14	MOVE	221,1743,-915,542,425,385,542
15	MOVE	221,1743,-1605,0,425,385,0
16	MOVE	221,-1707,-1605,0,425,385,0
17	MOVE	221,-1707,-817,674,408,368,674
18	MOVE	221,-18,-817,674,408,368,674
19	MOVE	221,-18,-817,674,731,45,674
20	MOVE	221,-18,-817,674,-38,814,674
21	MOVE	221,-18,-817,674,433,343,674
22	MOVE	221,-18,-699,276,36,-54,276
23	MOVE	221,-52,-366,83,-19,1,83

PROGRAM FOR SPEED 7

STEP COMMAND OPERANDS

.

-

0	MOVE	183,0,0,0,0,0,0
1	PAUSE	12
2	MOVE	236,-51,-361,73,0,0,73
3	MOVE	236,-51,-873,264,0,0,264
4	MOVE	236, -51, -873, 578, 385, 385, 578
5	MOVE	236,1763,-873,578,385,385,578
6	MOVE	236,1763,-1183,-240,168,168,-240
7	MOVE	236, -1752, -1183, -240, 168, 168, -240
8	MOVE	236, -1752, -2009, -1297, -412, -412, -1297
9	MOVE	236, -14, -2009, -1297, -412, -412, -1297
10	MOVE	236,-14,-915,542,405,405,542
11	MOVE	236,-14,-915,542,1151,-341,542
12	MOVE	236,-14,-915,542,68,742,542
13	MOVE	236,-14,-915,542,425,385,542
14	MOVE	236,1743,-915,542,425,385,542
15	MOVE	236,1743,-1605,0,425,385,0
16	MOVE	236,-1707,-1605,0,425,385,0
17	MOVE	236,-1707,-817,674,408,368,674
18	MOVE	236,-18,-817,674,408,368,674
19	MOVE	236,-18,-817,674,731,45,674
20	MOVE	236,-18,-817,674,-38,814,674
21	MOVE	236,-18,-817,674,433,343,674
22	MQVE	236,-18,-699,276,36,-54,276
23	MOVE	236,-52,-366,83,-19,1,83

APPENDIX B

Microbot TeachMover Characteristics

-

.

.

Table ---- Microbot TeachMover Characteristics

GENERAL	
Configuration	5 revolution axes and integral hand
Drive	Electric stepper motors - Open loop control
Controller	6502A microprocessor with 4K bytes of EPROM and 1K bytes of RAM located in the base of the unit
Interface	Dual RS-232C asynchronous serial communications interfaces (baud rate is switch-selectable between 110, 150, 300, 600, 1200, 2400, 4800, and 9600 baud)
Teach Control	14-key 13-function keyboard; 5 output and 7 input bits under computer control
Power requirement	12 to 14 volts, 4.5 amps DC
PERFORMANCE	
Resolution Load Capacity Gripping Force Reach Velocity	0.011 in (0.25mm) maximum on each axis 16 oz (455 gm) at full extension 3 lbs (13 newtons) maximum 17.5 in (444 mm) 0-7 in/sec (0-178 mm/sec) with controlled acceleration
DETAILED PERFORMANCE	
Joint Max Range of Motion	Speed (full Load) Speed (No load)
Base $\pm 90^{\circ}$ Shoulder $+144^{\circ}$, -35° Elbow $+0^{\circ}$, -149° Wrist Roll $\pm 270^{\circ}$ Wrist Pitch $\pm 90^{\circ}$ Hand0-3 in	0.37 rad/sec 0.42 rad/sec 0.15 rad/sec 0.36 rad/sec 0.23 rad/sec 0.82 rad/sec 1.31 rad/sec 2.02 rad/sec 1.31 rad/sec 2.02 rad/sec 20 mm/sec
PHYSICAL CHARACTERISTICS	

Arm Weight Teach Control Cable Length 8 lbs (4kg) 3.75 ft.(1150 mm)

Source: Heath, L. (1986). Microbot.

.

APPENDIX C

.

-,

÷

.

The Result of "b" and "r" Calculated with "POM" Software Package

File: AYLOAD:2 & SPEED:3

-

PAYLOAD:2 & SPEED:3

Method:Linear Regression/least squares

	éD	Period	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	5.74	32.97
cycle 2	7.04	2	4.00	14.08	7.72191	.465003
cycle 3	10.40	3	9.00	31.20	9.70221	.486904
cycle 4	10.44	4	16.00	41.76	11.6825	1.54385
cycle 5	12.11	5	25.00	60.55	13.6628	2.41125
cycle 6	13.20	6	36.00	79.20	15.6431	5.96885
cycle 7	16.33	7	49.00	114.31	17.6234	1.67295
cycle 8	19.35	8	64.00	154.80	19.6037	0.06438
cycle 9	21.00	9	81.00	189.00	21.58	.341093
cycle10	23.29	10	100.00	232.90	23.5643	0.07526
cycle11	26.25	11	121.00	288.75	25.5446	.497536
cycle12	31.20	12	144.00	374.40	27.5249	13.51
cycle13	33.32	13	169.00	433.16	29.5052	14.5524
cycle14	33.88	14	196.00	474.32	31.4855	5.73341
cycle15	36.23	15	225.00	543.45	33.4659	7.64052
cycle16	37.88	16	256.00	606.08	35.4462	5,92362
cycle17	39.85	17	289.00	677.45	37.4265	5.87356
cycle18	42.58	18	324.00	766.44	39.4068	10.0695
cycle19	42.22	19	361.00	802.18	41.39	.693788
cycle20	42.56	20	400.00	851.20	43.3674	.651833
cycle21	47.18	21	441.00	990.78	45.3477	3.35744
cycle22	48.31	22	484.00	1062.82	47.3280	.964388
cycle23	50.30	23	529.00	1156.90	49.3083	0.98
cycle24	52.36	24	576.00	1256.64	51.2886	1.14795
cycle25	53.56	25	625.00	1339.00	53.2689	0.08475
cycle26	54.09	26	676.00	1406.34	55.2492	1.34
cycle27	55.60	27	729.00	1501.20	57.2295	2.65522
cycle28	55.82	28	784.00	1562.96	59.21	11.4907
cycle29	59.00	29	841.00	1711.00	61.19	4.79649
cycle30	58.33	30	900.00	1749.90	63.17	23.4294
TOTALS	1033.68	465.00	9455.00	20472.8	65.1507	161.391
AVERAGE	34.456 🕤	15.50	315.167	682.426	0.00	5.37971
						(MSE)

Next period forecast=65.1507Regression line = : Y =3.76 +1.98 * XCorrelation coefficient =0.9909684Standard error =2.400828

File: PAYLOAD:2 & SPEED:5

~

Mechod: PII	lear reyres		-	_	<u> </u>	-
	@D	Period	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	7.74	59.8715
cycle 2	3.77	2	4.00	7.54	8.93914	26.72
cycle 3	7.07	3	9.00	21.21	10.1406	9.42865
cycle 4	10.02	4	16.00	40.08	11.34	1.75
cycle 5	13.06	5	25.00	65.30	12.5436	.266718
cycle 6	14.62	6	36.00	87.72	13.75	.765582
cycle 7	16.42	7	49.00	114.94	14.9465	2.17122
cycle 8	17.53	8	64.00	140.24	16.1480	1.91
cycle 9	19.17	9	81.00	172.53	17.3494	3.31445
cycle10	20.16	10	100.00	201.60	18.5509	2.58917
cycle11	22.71	11	121.00	249.81	19.7524	8.75
cycle12	22.83	12	144.00	273.96	20.9538	3.52
cycle13	23.68	13	169.00	307.84	22.1553	2.32465
cycle14	26.43	14	196.00	370.02	23.36	9.44
cycle15	27.46	-15	225.00	411.90	24.5583	8.42007
cycle16	28.57	16	256.00	457.12	25.7597	7.89759
cycle17	29.69	17	289.00	504.73	26.9612	7.44633
cycle18	29.58	18	324.00	532.44	28.1627	2.01
cycle19	31.21	19	361.00	592.99	29.3641	3.41
cycle20	31.80	20	400.00	636.00	30.5656	1.52370
cycle21	32.69	21	441.00	686.49	31.77	0.85
cycle22	33.11	22	484.00	728.42	32.9686	0.02001
cycle23	33.83	23	529.00	778.09	34.17	0.12
cycle24	34.83	24	576.00	835.92	35.3715	.293222
cycle25	36.00	25	625.00	900.00	36.5730	.328296
cycle26	37.11	26	676.00	964.86	37.7744	.441486
cycle27	37.15	27	729.00	1003.05	38.9759	3.33396
cycle28	37.94	28	784.00	1062.32	40.18	5.01
cycle29	37.78	29	841.00	1095.62	41.3789	12.9518
cycle30	38.55	30	900.00	1156.50	42.5803	16.2435
TOTALS	754.77	465.00	9455.00	14399.2	43.7818	203.111
AVERAGE	25.159	15.50	315.167	479.975	0.00	6.77037
						(MSE)

Method:Linear Regression/least squares

Next period forecast=43.7818Regression line = : Y =6.54 + 1.20147 * XCorrelation coefficient =0.9700949Standard error = 2.69332

File: AYLOAD:2 & SPEED:7

æ

Method:Lin		ssion/least				
	@D	Period(x)	x^2	х * У	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	7.34823	54.00
cycle 2	3.15	2	4.00	6.30	8.85	32.5071
cycle 3	7.60	3	9.00	22.80	10.3548	7.58878
cycle 4	8.18	4	16.00	32.72	11.86	13.53
cycle 5	11.86	5	25.00	59.30	13.3613	2.25396
cycle 6	14.36	6	36.00	86.16	14.86	0.25
cycle 7	15.83	7	49.00	110.81	16.3679	.289294
cycle 8	18.78	8	64.00	150.24	17.8711	.826042
cycle 9	20.66	9	81.00	185.94	19.3744	1.65275
cycle10	23.05	10	100.00	230.50	20.8777	4.71899
cycle11	24.89	11	121.00	273.79	22.3809	6.29534
cycle12	27.88	12	144.00	334.56	23.8842	15.9663
cycle13	29.77	13	169.00	387.01	25.39	19.21
cycle14	31.31	14	196.00	438.34	26.8908	19.5297
cycle15	32.88	15	225.00	493.20	28.39	20.1239
cycle16	34.42	16	256.00	550.72	29.8973	20.4547
cycle17	35.14	17	289.00	597.38	31.4006	13.9833
cycle18	35.35	18	324.00	636.30	32.9039	5.98364
cycle19	35.90	19	361.00	682.10	34.4071	2.22870
cycle20	39.33	20	400.00	786.60	35.91	11.6937
cycle21	40.56	21	441.00	851.76	37.4137	9.89943
cycle22	39.83	22	484.00	876.26	38.9169	.833691
cycle23	40.71	23	529.00	936.33	40.4202	0.08398
cycle24	40.82	24	576.00	979.68	41.9235	1.21767
cycle25	41.45	25	625.00	1036.25	43.4268	3.90754
cycle26	42.84	26	676.00	1113.84	44.93	4.36820
cycle27	43.07	27	729.00	1162.89	46.4333	11.3118
cycle28	43.95	28	784.00	1230.60	47.9366	15.8927
cycle29	45.04	29	841.00	1306.16	49.4398	19.3586
cycle30	45.76	30	900.00	1372.80	50.9431	26.8647
TOTALS	874.37	465.00	9455.00	16931.3	52.4464	346.82
AVERAGE	29.1457	15.50	315.167	564.378	0.00	11.5607
						(MSE)

Next period forecast=52.4464Regression line = : Y =5.84 + 1.50327 * XCorrelation coefficient =0.967512Standard or comparent 0.967512 Standard error = 3.519435 File: AYLOAD:20 & SPEED:3

.

PAYLOAD:20 & SPEED:3

······································						
Method:Lin		ssion/least			T	T
_	@D	Period(x)	x^2	x * y	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	7.83477	61.3836
cycle 2	6.92	2	4.00	13.84	13.6504	45.2985
cycle 3	13.01	3	9.00	39.03	19.47	41.68
cycle 4	12.14	4	16.00	48.56	25.2817	172.705
cycle 5	21.70	5	25.00	108.50	31.0974	88.3104
cycle 6	29.95	6	36.00	179.70	36.91	48.48
cycle 7	39.23	7	49.00	274.61	42.7287	12.2406
cycle 8	59.28	8	64.00	474.24	48.5443	115.255
cycle 9	64.00	9	81.00	576.00	54.3600	92.9305
cycle10	70.32	10	100.00	703.20	60.1756	102.909
cycle11	77.34	11	121.00	850.74	65.9912	128.794
cycle12	75.85	12	144.00	910.20	71.8069	16.3466
cycle13	80.86	13	169.00	1051.18	77.6225	10.4811
cycle14	88.10	14	196.00	1233.40	83.44	21.7324
cycle15	93.76	- 15	225.00	1406.40	89.2538	20.3055
cycle16	99.96	16	256.00	1599.36	95.07	23.92
cycle17	107.10	17	289.00	1820.70	100.885	38.6245
cycle18	111.11	18	324.00	1999.98	106.70	19.4411
cycle19	117.16	19	361.00	2226.04	112.516	21.5627
cycle20	119.77	20	400.00	2395.40	118.332	2.06759
cycle21	127.68	21	441.00	2681.28	124.148	12.4769
cycle22	131.15	22	484.00	2885.30	129.963	1.40806
cycle23	136.86	23	529.00	3147.78	135.779	1.16851
cycle24	141.37	24	576.00	3392.88	141.595	0.05048
cycle25	150.68	25	625.00	3767.00	147.41	10.6907
cycle26	151.44	26	676.00	3937.44	153.226	3.18967
cycle27	154.32	27	729.00	4166.64	159.042	22.2937
cycle28	157.95	28	784.00	4422.60	164.857	47.7104
cycle29	161.36	29	841.00	4679.44	170.67	86.7303
cycle30	164.48	30	900.00	4934.40	176.489	144.21
TOTALS	2764.85	465.00	9455.00	55925.8	182.304	1414.39
AVERAGE	92.1617	15.50	315.167	1864.19	0.00	47.1465
				-		(MSE)

Next period forecast= 182.304 Regression line = : Y = 2.01912 + 5.81565 * X Correlation coefficient = 0.9908249Standard error = 7.107325 File:

AYLOAD:20 & SPEED:5

.

PAYLOAD:20 & SPEED:5

Method:Linear Regression/least squares

	ØD	Period(x)	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	6.98734	48.8230
cycle 2	2.19	2	4.00	4.38	8.64217	41.6305
cycle 3	9.44	3	9.00	28.32	10.297	.734443
cycle 4	14.43	4	16.00	57.72	11.9518	6.14136
cycle 5	16.02	5	25.00	80.10	13.6067	5.82
cycle 6	15.07	6	36.00	90.42	15.2615	0.03666
cycle 7	15.51	7	49.00	108.57	16.9163	1.98
cycle 8	18.93	8	64.00	151.44	18.5711	.128787
cycle 9	20.52	9	81.00	184.68	20.2260	0.09
cycle10	26.40	10	100.00	264.00	21.8808	20.4233
cycle11	24.90	11	121.00	273.90	23.5356	1.86155
cycle12	30.04	12	144.00	360.48	25.1904	23.5183
cycle13	29.00	13	169.00	377.00	26.8453	4.64289
cycle14	30.22	14	196.00	423.08	28.50	2.95808
cycle15	30.30	- 15	225.00	454.50	30.1549	0.02105
cycle16	32.98	16	256.00	527.68	31.8097	1.36949
cycle17	35.05	17	289.00	595.85	33.4646	2.51358
cycle18	35.76	18	324.00	643.68	35.1194	.410366
cycle19	36.64	19	361.00	696.16	36.7742	0.02
cycle20	38.08	20	400.00	761.60	38.43	.121838
cycle21	39.39	21	441.00	827.19	40.0839	.481472
cycle22	41.97	22	484.00	923.34	41.7387	0.05350
cycle23	42.71	23	529.00	982.33	43.3935	.467222
cycle24	45.55	24	576.00	1093.20	45.0484	.251639
cycle25	48.24	25	625.00	1206.00	46.70	2.36
cycle26	49.01	26	676.00	1274.26	48.36	.425085
cycle27	49.07	27	729.00	1324.89	50.0128	.888948
cycle28	50.00	28	784.00	1400.00	51.6677	2.78111
cycle29	50.26	29	841.00	1457.54	53.32	9.37888
cycle30	51.79	30	900.00	1553.70	54.9773	10.16
TOTALS	929.47	465.00	9455.00	18126.0	56.6321	190.49
AVERAGE	30.9823 -	15,50	315.167	604.20	0.00	6.34968
						(MSE)

Next period forecast= 56.6321 Regression line = : Y = 5.33252 + 1.65483 * X Correlation coefficient = 0.9848743Standard error = 2.608299 File: AYLOAD:20 & SPEED:7

e.

PAYLOAD:20 & SPEED:7

Method:Linear Regression/least squares

	ÕD	Period(x)	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	11.24	126.294
cycle 2	4.48	2	4.00	8.96	13.5344	81.9825
cycle 3	6.91	3	9.00	20.73	15.8308	79.5804
cycle 4	12.25	4	16.00	49.00	18.1271	34.5408
cycle 5	15.77	5	25.00	78.85	20.4235	21.6551
cycle 6	20.72	6	36.00	124.32	22.7199	4.00
cycle 7	26.37	7	49.00	184.59	25.0162	1.83267
cycle 8	29.88	8	64.00	239.04	27.3126	6.59152
cycle 9	33.32	9	81.00	299.88	29.6090	13.7718
cycle10	37.41	10	100.00	374.10	31.9053	30.3014
cycle11	40.70	11	121.00	447.70	34.20	42.23
cycle12	41.90	12	144.00	502.80	36.50	29.1809
cycle13	45.29	13	169.00	588.77	38.7944	42.19
cycle14	49.89	14	196.00	698.46	41.09	77.43
cycle15	50.59	15	225.00	758.85	43.3872	51.881
cycle16	52.82	16	256.00	845.12	45.6835	50.9294
cycle17	54.46	17	289.00	925.82	47.9799	41.9919
cycle18	55.49	18	324.00	998.82	50.2762	27.1833
cycle19	56.11	19	361.00	1066.09	52.5726	12.5131
cycle20	58.49	20	400.00	1169.80	54.8690	13.1119
cycle21	58.27	21	441.00	1223.67	57,1653	1.22027
cycle22	59.64	22	484.00	1312.08	59.4617	0.03179
cycle23	64.26	23	529.00	1477.98	61.76	6.25967
cycle24	63.50	24	576.00	1524.00	64.0544	0.31
cycle25	63.63	25	625.00	1590.75	66.3508	7.40274
cycle26	64.87	26	676.00	1686.62	68.6472	14.2669
cycle27	65.55	27	729.00	1769.85	70.9435	29.0901
cycle28	66.75	28	784.00	1869.00	73.24	42.12
cycle29	67.84	29	841.00	1967.36	75.5363	59.2324
cycle30	68.90	30	900.00	2067.00	77.8326	79.7916
TOTALS	1336.06	465.00	9455.00	25870.0	80.1290	1028.91
AVERAGE	44.5353	15.50	315.167	862.334	0.00	34.2970
						(MSE)

Next period forecast=80.1290Regression line = : Y =8.94 + 2.29636 * XCorrelation coefficient =0.9592287Standard error = 6.06191

File:

AYLOAD:65 & SPEED:3

v

PAYLOAD:65 & SPEED:3

Method:Li		ssion/least				
	@D	Period(x)	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	20.2583	410.40
cycle 2	17.89	2	4.00	35.78	26.6773	77.2168
cycle 3	30.53	3	9.00	91.59	33.0963	6.58577
cycle 4	39.11	4	16.00	156.44	39.5152	.164219
cycle 5	47.17	5	25.00	235.85	45.9342	1.52719
cycle 6	54.94	6	36.00	329.64	52.3532	6.69169
cycle 7	13.49	7	49.00	94.43	58.7721	2050.47
cycle 8	70.75	8	64.00	566.00	65.1911	30.9014
cycle 9	78.98	9	81.00	710.82	71.61	54.32
cycle10	80.83	10	100.00	808.30	78.03	7.84544
cycle11	93.51	11	121.00	1028.61	84.45	82.12
cycle12	100.66	12	144.00	1207.92	90.8670	95.9037
cycle13	108.38	13	169.00	1408.94	97.2859	123.078
cycle14	115.36	14	196.00	1615.04	103.70	135.842
cycle15	122.68	-15	225.00	1840.20	110.12	157.657
cycle16	130.20	16	256.00	2083.20	116.543	186.519
cycle17	133.58	17	289.00	2270.86	122.962	112.747
cycle18	139.43	18	324.00	2509.74	129.38	100.987
cycle19	145.95	19	361.00	2773.05	135.800	103.028
cycle20	149.68	20	400.00	2993.60	142.219	55.6713
cycle21	152.37	21	441.00	3199,77	148.638	13.9304
cycle22	157.39	22	484.00	3462.58	155.057	5.44
cycle23	163.36	23	529.00	3757.28	161.476	3.55108
cycle24	167.97	24	576.00	4031.28	167.895	0.00570
cycle25	172.84	25	625.00	4321.00	174.314	2.17123
cycle26	175.54	26	676.00	4564.04	180.732	26.96
cycle27	179.82	27	729.00	4855.14	187.151	53.7497
cycle28	182.97	28	784.00	5123.16	193.57	112.369
cycle29	186.24	29	841.00	5400.96	199.989	189.04
cycle30	188.38	30	900.00	5651.40	206,408	325.02
TOTALS	3400.00	465.00	9455.00	67126.6	212.827	4531.92
AVERAGE	113.333	15.50	315.167	2237.55	0.00	151.064
				r.		(MSE)

Next period forecast= 212.827 Regression line = : Y = 13.8394 + 6.41896 * X Correlation coefficient = 0.9763941Standard error = 12.7222

File: AYLOAD:65 & SPEED:5

~

Method:Li	near Regre	ssion/least	squares			
Methodiati	eD	Period(x)	x^2	x * y	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	6.92	47.8989
cycle 2	3.99	2	4.00	7.98	9.80	33.8015
cycle 3	8.21	3	9.00	24.63	12.6869	20.0426
cycle 4	12.38	4	16.00	49.52	15.57	10.1754
cycle 5	16.46	5	25.00	82.30	18.45	3.97
cycle 6	22.54	6	36.00	135.24	21.3359	1.45
cycle 7	25.14	7	49.00	175.98	24.2189	.848465
cycle 8	29.41	8	64.00	235.28	27,1019	5.32745
cycle 9	31.16	9	81.00	280.44	29.9849	1.38093
cycle10	34.05	10	100.00	340.50	32.8679	1.39745
cycle11	37.41	11	121.00	411.51	35.7509	2.75275
cycle12	42.12	12	144.00	505.44	38.6339	12.1532
cycle13	45.23	13	169.00	587.99	41.5168	13.7875
cycle14	50.82	14	196.00	711.48	44.3998	41.2184
cycle15	50.61	-15	225.00	759.15	47.2828	11.07
cycle16	52.29	16	256.00	836.64	50.1658	4.51207
cycle17	57.02	17	289,00	969.34	53.0488	15.7702
cycle18	59.66	18	324.00	1073.88	55.9318	13.8993
cycle19	60.16	19	361.00	1143.04	58.8148	1.8095
cycle20	64.91	20	400.00	1298.20	61.6978	10.3181
cycle21	65.35	21	441.00	1372.35	64.5808	0.59
cycle22	69.02	22	484.00	1518.44	67.4638	2.42
cycle23	70.53	23	529.00	1622.19	70.3468	0.03356
cycle24	72.89	24	576.00	1749.36	73.2298	.115463
cycle25	74.76	25	625.00	1869.00	76.11	1.83004
cycle26	77.68	26	676.00	2019.68	79.00	1.73
cycle27	78.61	27	729.00	2122.47	81.8788	10.6849
cycle28	81.24	28	784.00	2274.72	84.7618	12.4029
cycle29	82.80	29	841.00	2401.20	87.6448	23.4718
cycle30	85.28	30	900.00	2558.40	90.5278	27.5391
TOTALS	1461.73	465.00	9455.00	29136.3	93.4108	334.408
AVERAGE	48.7243	15.50	315.167	971.212	0.00	11.1469
						(MSE)

Next period forecast= 93.4108 Regression line = : Y = 4.03791 + 2.88300 * X Correlation coefficient = 0.9911672Standard error = 3.455884 File: AYLOAD:65 & SPEED:7

~

PAYLOAD:65 & SPEED:7

Wethod . I in	noar Dogro	ssion/least	canaros			
Mechou.ht	liear Regre	Period(x)	x^2	x * y	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	25.3003	640.104
cycle 2	18.84	2	4.00	37.68	29.1574	106.448
cycle 3	28.47	3	9.00	85.41	33.0144	20.6519
cycle 4	34.61	4	16.00	138.44	36.8715	5.11447
cycle 5	38.92	5	25.00	194.60	40.7286	3.27107
cycle 6	42.29	6	36.00	253.74	44.59	5.27
cycle 7	46.21	7	49.00	323.47	48.4428	4.98529
cycle 8	50.10	8	64.00	400.80	52.2999	4.84
cycle 9	52.75	9	81.00	474.75	56.1569	11.6073
cycle10	65.16	10	100.00	651.60	60.01	26.48
cycle11	71.77	11	121.00	789.47	63.8711	62.3923
cycle12	76.82	12	144.00	921.84	67.7282	82.6608
cycle13	81.17	13	169.00	1055.21	71.59	91.8667
cycle14	86.38	14	196.00	1209.32	75.4424	119.632
cycle15	91.35	15	225.00	1370.25	79.2995	145.216
cycle16	95.47	16	256.00	1527.52	83.1565	151.621
cycle17	97.89	17	289.00	1664.13	87.0136	118.295
cycle18	102.01	18	324.00	1836.18	90.8707	124.084
cycle19	102.95	19	361.00	1956.05	94.73	67.6047
cycle20	104.70	20	400.00	2094.00	98.5849	37.39
cycle21	106.36	21	441.00	2233.56	102.442	15.35
cycle22	108.28	22	484.00	2382.16	106.299	3.92416
cycle23	111.11	23	529.00	2555.53	110.156	.909859
cycle24	111.84	24	576.00	2684.16	114.013	4.72288
cycle25	112.67	25	625.00	2816,75	117.87	27.0431
cycle26	115.54	26	676.00	3004.04	121.727	38.2837
cycle27	117.96	27	729.00	3184.92	125.584	58.1326
cycle28	120.03	28	784.00	3360.84	129.442	88.5775
cycle29	122.30	29	841.00	3546.70	133.299	120.97
cycle30	122.89	30	900.00	3686.70	137.156	203.511
TOTALS	2436.84	465.00	9455.00	46439.8	141.013	2390.97
AVERAGE	81.228	15.50	315.167	1547.99	0.00	79.6988
						(MSE)

Next period forecast= 141.013 Regression line = : Y = 21.4432 + 3.85708 * X Correlation coefficient = 0.9660556Standard error = 9.240759

File: PAYLOAD:130 & SPEED:3 PAYLOAD:130 & SPEED:3

÷

ethod.I i	noor Boaro	ssion/least	eallaroc			
Method: DI		Period(x)	x ²	x * y	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	22.7515	517.629
cycle 2	9.00	2	4.00	18.00	24.6077	243.599
cycle 3	11.91	3	9.00	35.73	26.4639	211.81
cycle 4	17.87	4	16.00	71.48	28.32	109.204
cycle 5	24.70	5	25.00	123.50	30,1763	29.9894
cycle 6	32.31	6	36.00	193.86	32.0325	0.07703
cycle 7	37.61	7	49.00	263.27	33.8887	13.8484
cycle 8	44.31	8	64.00	354.48	35.7449	73.3618
cycle 9	49.96	9	81.00	449.64	37.60	152.744
cycle10	52.50	10	100.00	525.00	39.4572	170.113
cycle11	53.99	11	121.00	593.89	41.3134	160.695
cycle12	42.72	12	144.00	512.64	43.1696	.202175
cycle13	66.01	13	169.00	858.13	45.0258	440.335
cycle14	52.20	14	196.00	730.80	46.88	28.2808
cycle15	66.88	15	225.00	1003.20	48.7382	329.124
cycle16	53.70	16	256.00	859.20	50.5944	9.64458
cycle17	52.96	17	289.00	900.32	52.4506	.259457
cycle18	53.15	18	324.00	956.70	54.3068	1.33825
cycle19	53.36	19	361.00	1013.84	56.16	7.85695
cycle20	55.18	20	400.00	1103.60	58.0192	8.06118
cycle21	70.91	21	441.00	1489.11	59.8754	121.762
cycle22	69.16	22	484.00	1521.52	61.7316	55.1809
cycle23	68.38	23	529.00	1572.74	63.5878	22.97
cycle24	66.80	24	576.00	1603.20	65.44	1.83872
cycle25	69.61	25	625.00	1740.25	67.3002	5.33514
cycle26	67.98	26	676.00	1767.48	69.1564	1.38392
cycle27	69.59	27	729.00	1878.93	71.0126	2.02381
cycle28	68.37	28	784.00	1914.36	72.8688	20.2392
cycle29	54.32	29	841.00	1575.28	74.725	416.364
cycle30	54.55	30	900.00	1636.50	76.58	485.373
TOTALS	1489.99	465.00	9455.00	27266.6	78.44	3640.65
AVERAGE	49.6663	15.50	315.167	908.888	0.00	121.355
				-		(MSE)
			Next perio	1 forecast=	78.44	

Next period forecast=78.44Regression line = : Y = 20.8953 + 1.85620 * X Correlation coefficient = 0.8247457Standard error = 11.40276 File: AYLOAD:130 & SPEED:5

~

PAYLOAD:130 & SPEED:5

Method:Lin	near Regre	ssion/least	squares			
	@D	Period(x)	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	23.8771	570.12
cycle 2	18.23	2	4.00	36.46	27.3993	84.0768
cycle 3	27.54	3	9.00	82.62	30.9216	11.4350
cycle 4	30.17	4	16.00	120.68	34.44	18.2653
cycle 5	28.38	5	25.00	141.90	37.97	91.8915
cycle 6	31.58	6	36.00	189.48	41.4882	98.1730
cycle 7	38.14	7	49.00	266.98	45.0104	47.20
cycle 8	51.87	8	64.00	414.96	48.5327	11.1378
cycle 9	58.57	9	81.00	527.13	52.05	42.4466
cycle10	63.51	10	100.00	635.10	55.5771	62.9307
cycle11	71.48	11	121.00	786.28	59.0993	153.281
cycle12	75.54	12	144.00	906.48	62.6216	166.886
cycle13	77.69	13	169.00	1009.97	66.1438	133.315
cycle14	79.16	14	196.00	1108.24	69.666	90.1361
cycle15	83.50	15	225.00	1252.50	73.1882	106.333
cycle16	86.20	16	256.00	1379.20	76.7104	90.0517
cycle17	88.93	17	289.00	1511.81	80.2327	75.6436
cycle18	91.74	18	324.00	1651.32	83.7549	63.76
cycle19	93.09	19	361.00	1768.71	87.2771	33.7897
cycle20	98.24	20	400.00	1964.80	90.7993	55.3635
cycle21	98.28	21	441.00	2063.88	94.3215	15.6693
cycle22	100.40	22	484.00	2208.80	97.8438	6.53
cycle23	101.52	23	529.00	2334.96	101.366	0.02
cycle24	103.89	24	576.00	2493.36	104.888	.996433
cycle25	106.38	25	625.00	2659.50	108.41	4.12269
cycle26	106.89	26	676.00	2779.14	111.933	25.4285
cycle27	108.79	27	729.00	2937.33	115.45	44.4206
cycle28	108.46	28	784.00	3036.88	118.977	110.609
cycle29	110.14	29	841.00	3194.06	122.499	152.753
cycle30	110.17	30	900.00	3305.10	126.022	251.272
TOTALS	2248.48	465.00	9455.00	42767.6	129.544	2618.07
AVERAGE	74.9493	15.50	315.167	1425.59	0.00	87.2689
						(MSE)

Next period forecast=129.544Regression line = : Y = 20.3549 + 3.52222 * XCorrelation coefficient =0.9561192Standard error = 9.669665

File: AYLOAD:130 & SPEED:7

~

PAYLOAD:130 & SPEED:7

	~					
Method:L1		ssion/least				-
_		Period(x)	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	11.8843	141.237
cycle 2	4.75	2	4.00	9.50	18.2446	182.103
cycle 3	21.26	3	9.00	63.78	24.60	11.1876
cycle 4	30.54	4	16.00	122.16	30.97	0.18
cycle 5	37.84	5	25.00	189.20	37.3252	.264973
cycle 6	44.84	6	36.00	269.04	43.6855	1.33293
cycle 7	49.53	7	49.00	346.71	50.0457	.265952
cycle 8	54.72	8	64.00	437.76	56.4059	2.84237
cycle 9	60.38	9	81.00	543.42	62.7662	5.69377
cycle10	65.73	10	100.00	657.30	69.13	11.5354
cycle11	72.90	11	121.00	801.90	75.4866	6.69059
cycle12	80.84	12	144.00	970.08	81.8468	1.01
cycle13	87.04	13	169.00	1131.52	88.21	1.36207
cycle14	94.69	14	196.00	1325.66	94.5673	0.02
cycle15	103.54	15	225.00	1553.10	100.928	6.82497
cycle16	110.40	16	256.00	1766.40	107.288	9.68601
cycle17	116.41	17	289.00	1978.97	113.648	7.62869
cycle18	144.95	18	324.00	2609.10	120.008	622.092
cycle19	148.60	19	361.00	2823.40	126.368	494.24
cycle20	152.08	20	400.00	3041.60	132.729	374.474
cycle21	154.63	21	441.00	3247.23	139.09	241.526
cycle22	156.35	22	484.00	3439.70	145.449	118.829
cycle23	159.17	23	529.00	3660.91	151.809	54.1788
cycle24	159.69	24	576.00	3832.56	158.170	2.31
cycle25	162.15	25	625.00	4053.75	164.530	5.66362
cycle26	164.98	26	676.00	4289.48	170.89	34.9289
cycle27	167.99	27	729.00	4535.73	177.25	85.7529
cycle28	169.87	28	784.00	4756.36	183.61	188.802
cycle29	172.45	29	841.00	5001.05	189.97	306.977
cycle30	174.91	30	900.00	5247.30	196.331	458.858
TOTALS	3123.23	465.00	9455.00	62704.7	202.691	3378.50
AVERAGE	104.108 -		315.167	2090.16	0.00	112.617
						(MSE)

Next period forecast=202.691Regression line = : Y =5.52 +6.36 * XCorrelation coefficient =0.9819223Standard error = 10.98457

File: AYLOAD:180 & SPEED:3

~

PAYLOAD:180 & SPEED:3

Method:Li	near Regres	sion/least	squares			
	ēd	Period	x^2	х * у	Forecast	Error^2
cycle 1	0.00	1	1.00	ō.00	38,3746	1472.61
cycle 2	15.94	2	4.00	31.88	38.8281	523.866
cycle 3	29.00	3	9.00	87.00	39.2817	105.712
cycle 4	43.53	4	16.00	174.12	39.7352	14.4004
cycle 5	45.83	5	25.00	229.15	40.1888	31.8237
cycle 6	50.09	6	36.00	300.54	40.6423	89.26
cycle 7	50.22	7	49.00	351.54	41.0958	83.2502
cycle 8	50.23	8	64.00	401.84	41.55	75.3529
cycle 9	48.62	9	81.00	437.58	42.0029	43.7855
cycle10	50.32	10	100.00	503.20	42.46	61.83
cycle11	52.21	11	121.00	574.31	42.91	86.4893
cycle12	53.61	12	144.00	643.32	43.3636	104.989
cycle13	55.42	13	169.00	720.46	43.8171	134.627
cycle14	54.32	14	196.00	760.48	44.2707	100.99
cycle15	51.15	15	225.00	767.25	44.7242	41.2906
cycle16	47.32	16	256.00	757.12	45.1778	4.58914
cycle17	50.25	17	289.00	854.25	45.6313	21.3322
cycle18	47.32	18	324.00	851.76	46.0849	1.52556
cycle19	47.51	19	361.00	902.69	46.5384	.943976
cycle20	48.80	20	400.00	976.00	46.9920	3.26901
cycle21	47.80	21	441.00	1003.80	47.4455	.125665
cycle22	48.66	22	484.00	1070.52	47.90	.579036
cycle23	47.56	23	529.00	1093.88	48.3526	.628213
cycle24	44.91	24	576.00	1077.84	48.8061	15.1800
cycle25	46.31	25	625.00	1157.75	49.2597	8.70
cycle26	47.33	26	676.00	1230.58	49.7132	5.67983
cycle27	43.94	27	729.00	1186.38	50.17	38.7729
cycle28	44.70	28	784.00	1251.60	50.6203	35.0504
cycle29	44.18	29	841.00	1281.22	51.0739	47.5256
cycle30	41.45	30	900.00	1243.50	51.5274	101.555
TOTALS	1348.53	465.00	9455.00	21921.6	51.9810	3255.73
AVERAGE	44.951 -	15.50	315.167	730.719	0.00	108.524
						(MSE)

Next period forecast=51.9810Regression line = : Y =37.92 + .453547 * XCorrelation coefficient =0.3526257Standard error = 10.78314

File: AYLOAD:180 & SPEED:5 PAYLOAD:180 & SPEED:5

-

Method:Linea	r Reares	sion/least	squares			
	@D	Period	x^2	x * y	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	4.01796	16.1440
cycle 2	5.80	2	4.00	11.60	4.05539	3.04
cycle 3	5.24	3	9.00	15.72	4.09281	1.31604
cycle 4	9.49	4	16.00	37.96	4.13024	28.727
cycle 5	2.16	5	25.00	10.80	4.16767	4.03074
cycle 6	1.73	6	36.00	10.38	4.21	6.12611
cycle 7	1.95	7	49.00	13.65	4.24253	5.25568
cycle 8	6.74	8	64.00	53.92	4.27995	6.05182
cycle 9	6.93	9	81.00	62.37	4.31738	6.82577
cycle10	6.34	10	100.00	63.40	4.35481	3.94097
cycle11	3.84	11	121.00	42.24	4.39224	.304969
cycle12	4.03	12	144.00	48.36	4.42967	.159734
cycle13	3.23	13	169.00	41.99	4.46710	1.53
cycle14	3.79	14	196.00	53.06	4.50452	.510545
cycle15	2.64	15	225.00	39.60	4.54195	3.61742
cycle16	2.79	16	256.00	44.64	4.57938	3.20188
cycle17	7.58	17	289.00	128.86	4.62	8.78
cycle18	3.75	18	324.00	67.50	4.65424	.817645
cycle19	3.81	19	361.00	72.39	4.69167	.777334
cycle20	3.74	20	400.00	74.80	4.72909	.978306
cycle21	3.87	21	441.00	81.27	4.76652	.803752
cycle22	3.60	22	484.00	79.20	4.80395	1.44950
cycle23	7.41	23	529.00	170.43	4.84138	6.59782
cycle24	6.74	24	576.00	161.76	4.88	3.46404
cycle25	4.85	25	625.00	121.25	4.91623	0.00439
cycle26	4.26	26	676.00	110.76	4.95366	0.48
cycle27	4.98	27	729.00	134.46	4.99109	0.00
cycle28	4.35	28	784.00	121.80	5.03	.460388
cycle29	4.74	29	841.00	137.46	5.06595	0.11
cycle30	6.44	30	900.00	193.20	5.10338	1.78657
	136.82	465.00	9455.00	2204.83	5.14	117.295
AVERAGE 4	.56067 -	15.50	315.167	73.4943	0.00	3.90982
						(MSE)

Next period forecast=5.14Regression line = : Y = 3.98053 + .037428 * XCorrelation coefficient =0.1616808Standard error = 2.046727

File: AYLOAD:250 & SPEED:3

~

Method:Li	near Regress	sion/least	squares			
1001104121	êD	Period	x^2	x * y	Forecast	Error^2
cycle 1	0.00	1	1.00	0.00	13.10	171.584
cycle 2	1.22	2	4.00	2.44	13,2983	145.885
cycle 3	8.22	3	9.00	24.66	13.4976	27.85
cycle 4	14.80	4	16.00	59.20	13.6969	1.21693
cycle 5	17.33	5	25.00	86.65	13.8961	11.79
cycle 6	19.21	6	36.00	115.26	14.0954	26.1588
cycle 7	22.33	7	49.00	156.31	14.2947	64.5658
cycle 8	22.19	8	64.00	177.52	14.49	59.2283
cycle 9	23.18	9	81.00	208.62	14.69	72.02
cycle10	21.48	10	100.00	214.80	14.8926	43.39
cycle11	21.30	11	121.00	234.30	15.0919	38.5409
cycle12	18.78	12	144.00	225.36	15.2912	12.17
cycle13	16.75	13	169.00	217.75	15.4904	1.58648
cycle14	15.63	14	196.00	218.82	15.6897	0.00357
cycle15	14.55	15	225.00	218.25	15.89	1.79
cycle16	16.16	16	256.00	258.56	16.0883	.005139
cycle17	13.87	17	289.00	235.79	16.2876	5.84
cycle18	13.61	18	324.00	244.98	16.49	8.27648
cycle19	13.57	19	361.00	257.83	16.6862	9.71054
cycle20	14.58	20	400.00	291.60	16.8855	5.31515
cycle21	13.64	21	441.00	286.44	17.0848	11.8663
cycle22	13.84	22	484.00	304.48	17.28	11.8614
cycle23	14.98	23	529.00	344.54	17.4833	6.26664
cycle24	13.56	24	576.00	325.44	17.6826	16.9960
cycle25	18.56	25	625.00	464.00	17.8819	.459815
cycle26	18.21	26	676.00	473.46	18.08	0.01659
cycle27	18.21	27	729.00	491.67	18.2805	0.00
cycle28	17.82	28	784.00	498.96	18.4798	.435293
cycle29	17.46	29	841.00	506.34	18.68	1.48610
cycle30	24.62	30	900.00	738.60	18.8783	32.9666
TOTALS	479.66	465.00	9455.00	7882.63	19.0776	789.308
AVERAGE	15.9887 -	15.50	315.167	262.754	0.00	26.3103
						(MSE)

Next period forecast= 19.0776 Regression line = : Y = 12.8997 + .199288 * X Correlation coefficient = 0.3187449Standard error = 5.309386