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A SHORT SOLUTION OF THE DIOPHANTINE EQUA
TION 2X4 - Y4 = Z2 

J. S. TURNER 

Let X, Y, Z be any positive integral solutions of this equation, 
and let H be the G.C.D. of X, Y. Then X = Hx, Y =Hy, Z = 
H 2z, and 

( 1) 2x4 - :}'4 = z 2 , where x, y, z are odd and co-prime in 
pairs. Hence it suffices to llncl primitive solutions x, y. z. 

From any primitive solution except x = y = z = l, a primitive 
solution with smaller x is derived as follows: 

From (1), 

[ :v2+z]2 [y2-z]~ 4 [z+y2]2 [z-y~.]2- _. 
2 + 2 - x , or 2 + 2 - .t • 

hence 
( 2) x 2 = l 2 + m2 ' where l, 11l ;ire co-prime positive integers, 

not both odd, with one of the following pairs of equations, 
(3) t(:v 2 +z)=l2-m2 , t(y 2 -z)=2lm, 
(4) ~- (:y 2 +z)=2lm, t(y2 -z)=l"-in2 , 

(5) t (z+:v2)=!2-m2, t(z-_v2)=2lm, 
(6) t(z+y2)=2lm, !(z-y2)=l2-1112. 
( 4) becomes ( 3) on changing the sign of z. ( 5) ~o reduces 

on changing the sign of 111, and ( 6) reduces to ( 4) on interchang
ing l, m. Hence it is only necessary to consider ( 3) and to allow 
l, m to be interchanged, or z, m to become negative. From ( 3), 

(7) y2 = [2 + 2lm - m2 , z = [2 - 2!111 - m2 , hence l is odd. 
Also (l + m) 2 - y2 = 2m2 , and the G.C.D. of l + m + y, 
l + in - y is 2, hence either l + m + y = 2f2, l + m - y = 
4g2 or l + m + y = 4g2, l + m - y = 2(2 , where f, g, are co
prime positive integers ;ind f is odd. Therefore 

(8) l + m = f 2 + 2q2 , y = ± (f2 - 2q2 ), 111 = 2fo. 
From (2), 
(9) l = r 2 - s2 • m2 = 2rs, x = r 2 + s2 , where r, s are co

prime positive integers, not both odd. From (7), (8), (9), 
(10) z = 2(r" - s2)2 - (fz + 2g2)2, 
( 11) f'g =rs, f2 + 2g2 - 2fr; = r2 - s2 . The same equations 

(11) are obtained from (4), (5), (6), except that (5) leads to 
negative values of f and r. 

Eliminate r from (11) and express the result as a quadratic in f. 
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Thus f2(r/ - s2 ) + 2fgs2 - s4 - 2s2g2 = 0, f(g 2 - s2 ) -

-gs2 + y2g2 - s4. Hence 
(12) 2g4 - s4 = t2 

(13) rg-fs +gs=± t. If t = 0, then from (12) g = 
s = 0, hence m = 0, x = y = z = 1, contrary to hypothesis; 
hence t may be taken > 0. Let h be the G.C.D. of g, s, and write 

(14) g = hx11 s = h}\, t = h2Z 11 then 
(15) 2x/ - y 1 4 = z1 2 , where xv Yv Z1 are odd and co-prime 

in pairs. Also x = r 2 + s2 = (f - g) 2 + g 2 + 2s2 > g2 ~ x1 > 0. 
Unless x 1 = y 1 = z1 = 1, the process can be repeated; also 

this solution must ultimately be reached since there cannot be an 
infinite sequence.of decreasing x's. 

To reverse the process, suppose first that x 1 = y1 = z 1 = 1. Then 
from (14) and (11) wehaveg=s,f=r,2rs=3s2 • Nowris 
prime to s, hences= 2, r = 3, x = 13, }' = 1, z == 239. Next sup
pose that x 1 ± y1 ; then from ( 14), ( 11) and (13), f x 1 = ryv fy1-
rx1 = h(x1y1 + z1 ), hence r(y/ - x 1 2 ) = lz.r1 (x1y1 + zi). 
Choose the least positive integral h for which h(x1y 1 + z 1 ) / 

(y12 - x/) is an integer I., then for each determination of h 
and/.., x 1 , y1 , h, A are co-prime in pairs. Then r = /..x 11 f = /..y11 and 
x, y, z are given by (9), (8), (10). It readily follows that z is 
prime to x and y. 

The next three solutions of ( 1) in orcler of magnitude are 
x = 1525, y = 1343, z = 2750257; x = 2165017, y = 2372159, 
z = 3503833734241; x = 42422452969, y = 9788425919, z = 
2543305831910011724639. 
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