
Proceedings of the Iowa Academy of Science Proceedings of the Iowa Academy of Science 

Volume 43 Annual Issue Article 75 

1936 

A Criterion for Prime Numbers A Criterion for Prime Numbers 

Carl W. Strom 
American Consulate General, Vancouver 

Copyright ©1936 Iowa Academy of Science, Inc. 

Follow this and additional works at: https://scholarworks.uni.edu/pias 

Recommended Citation Recommended Citation 
Strom, Carl W. (1936) "A Criterion for Prime Numbers," Proceedings of the Iowa Academy of Science, 
43(1), 263-265. 
Available at: https://scholarworks.uni.edu/pias/vol43/iss1/75 

This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It 
has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI 
ScholarWorks. For more information, please contact scholarworks@uni.edu. 

https://scholarworks.uni.edu/pias
https://scholarworks.uni.edu/pias/vol43
https://scholarworks.uni.edu/pias/vol43/iss1
https://scholarworks.uni.edu/pias/vol43/iss1/75
https://scholarworks.uni.edu/pias?utm_source=scholarworks.uni.edu%2Fpias%2Fvol43%2Fiss1%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/pias/vol43/iss1/75?utm_source=scholarworks.uni.edu%2Fpias%2Fvol43%2Fiss1%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu


A CRITERION FOR PRIME NUMBERS 

CART, w. STROM 

Let Jn denote the sum of the divisors of the positive integer n 
and J ( n - a). a<n. similarly denote the sum of the divisors of 
the positive integer ( n - a). Then, 

[ 3k2 
- k) 3k2 + k )] Jn=;(- l)k+1 J( n- - 2- + J( n- - 2- , k = 1, 2, 3, ___ , 

in which the sum on the right is to be extended to include all 
. . I f 3k2 - k 3k2 + k d r( ) 'f . pos1t1ve va ues o n - 2 and n ---2--, an J n - n , 1 1t 

occurs is defined to be equal to n. 
A necessary and sufficient condition that n be prime is that the 

sum on the right be equal to ( n + 1). 
A. 

Consider the infinite product, S = ( 1 - x) ( 1 - x 2 ) (1 - x 3 )---­

---------- ( 1- xn)----------· 
Euler 1 obtained the following relations : 

S = (l-x)-A1 x 2 , A,= (1-x)+x(l-x) (l-x2 )+x2(1-x) (l-x2 ) (1-
xa)+ ----------, 

A,= (l-x3 )-A 2 x5, A 2 = (l-x2 )+x2 (l-x2 ) (l-x3 );-x4 (l-x2 ) (l-x3 ) 

( 1-x4 )+ __________ , 

It is easily shown hy mathematical induction that 
An-1 = l-x2n+1 -An xan+2. 

A11 = ( l-x11 )+x11 ( l-x11 ) ( l-x11 + 1 ) >-x211 ( l-x11 ) ( 1-xn+i) (1-x~+ 2 ) +_ __ 

It follows by another mathematical induction that 

[ 
:ln:.!-n 3n:.:+n] 

S = 1-x-x2+x 5-1x 7 i ______ +(-l ) 11 x-2-+x-2- +-----------· 

B. 
Let2 z = xjl+x2 f2+x 3 J3t- ------ -+x 11 J1H ---------· 
This series is convergent in the interval 0 < x < ~ by Cauchy's 

radical test, for 
n __ _ 

11 112 + n 
Jn<}: r=--, 

-r=l 2 
J Euleri, Opera Omnia, Comm. 175, 541. 
'.!See Euleri, Opera Omnia, Comm. 175, 243, and 244. Jn these papers Euler 

obtained the law for the formation of the sums of the divisors of the positive integers 
and produced evidence, largely inductive, in its support. In the following, Euler's 
result is generalized and a proof of it is given that meets the requirements of modern 
function theory. 
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264 10\V A ACADEMY OF SCIENCE [Vo1. XLIII 

Therefore, 
11 __ _ 

L yx11 Jn < x < ~' 0 < x < ~-
n~oo 

The series of functions, 
x 2x2 3x" nx" 

1-x + 1-x" + 1-x3 + ------ + 1-x" ------· 
is uniformly convergent in the interval 3 0 < x < ~ for the 
terms are respectively less than the corresponding terms of the 

• 00 n ' . 
convergent senes, ~ -2 l . 1 he senes of functions may be ex-

n=l n_ 

paneled into a multiple series as follows: 
x + x 2 + x 3 + x·• + x" + x 6 + x 7 + x 8 + x9 + x 10 , ________________ _ 

+ x 2 + 2x4 + 2x6 + 2x8 + 2x10 + -----------------
_, 3x3 + 3x6 + 3x9 + -----------------

+ 4x4 + 4x8 + -----------------
+ Sx5 + Sx10 + -----------------

+--------------------------------------
In this form n is multiplied by the sum of all those powers of x 
whose indices are multiples of n. 

Since the series of the sums of the rows is uniformly convergent, 
the multiple series may be summed by columns for values of x 
lying within the interval of uniform convergence as follows: 

x+x2 ( 1+2) +x3 ( 1+3) +x4 ( 1+2+4) +x5 ( 1+5) +----------· 
In this form each power of x is multiplied by the sum of all the 
positive integers of which the index of the power is an integral 
multiple. 

Hence, the given series of functions equals 

x J 1 + x 2 f 2 + x 3 J 3 + ------ + x" f n + ------ = z. 
Since the series of functions is uniformly convergent, it may 

be integrated term for term for values of x lying within the in­
terval of convergence. Therefore, 

J- z clx = log(l-x)+log(l-x2 )+1og(l-x'')+---+log( 1-xn)+ ___ , 
x 

=log(l-x)(l-x2 )(l-x3 )------(1-xn) _____ _ 

( [ 3n2-n 3n'+n] ) 
=log 1-x-x2+x5-t-x7+---(-1) 11 x -2- +x -2- +---,by A. 

Differentiating: 

-x c~ (1-x-x"+xs+x'-'-----f(-l)n[ x :1n;-n +x :Jn'2+n]+-----) 
z 

[ 3n'-n ::n'+n] 
1-x-x2+x5+x7 + ____ +(-1) 1 x -2- +x -2- -!· _________ _ 

3 This is not the full interval of convergence for this seri1:s or for those that 
follow, but it suffices for the purposes of this argument. 

2

Proceedings of the Iowa Academy of Science, Vol. 43 [1936], No. 1, Art. 75

https://scholarworks.uni.edu/pias/vol43/iss1/75



z 

1936] CRITERION FOR PRIME NUMBERS 265 

Since the series in the numerator is a power series, it may be 
differentiated term for term and the new series will be convergent 
for values of x lying within the interval of convergence of the 
original series. Then, 

? " - n 1 n -n -- 11 +n -~-[ 3 ~ 3n'-n 3 " an'+n] 
x+2x·-5x"-7x • -t ___ + ( -1) + - 2-x 2 + - 2-x ~ +---

2 5· 7--L n ~ -2-[ 
3n'-n 3n'+n J 

1-X-X +x +x , ----+(-1) x +x +----------

Hence, 
[x J l+x2 .f 2+x3 .f 3+ ______ +xn .f n + ------]. 

[ ( 3n"-n 3n'+n ) ] 
l-x-x2+x5+x7+ ----+(-1 )n x -2- +x -2- +---------- = 

[ ( 3n2-n 3n'-n 3n2+n 3n'+n ) ] 
x+2x2-5x"-7x7+---+(-l)n+i - 2-x -2-+ - 2-x -2- +--

The series on the left hand side are both absolutely convergent, 
0 < x < !, and may therefore be multiplied according to the 
ordinary rule for the multiplication of series. Since the expression 
is an identity in x, 0 < x < !, multiplying and equating coeffi­
cients of like powers ofx in the two members : 

f 1=1 
J2=f 1+2 
J 3=f2+f1, 

r _ "" c-1 > k+1 [ 1• c _ 3k2-k) r c _ 3k2+k)] k _ 1 2 3 _ n - ~ . n _ 2_ +. n _ 2_ , - , , ,----, 

in which the sum on the right is to be extended to include all 

. . l f 3k2-k d 3k2+k d r c ) . f . positive va ues o n - - 2- an n - - 2- an . n - n , 1 1t 

occurs, is defined to be equal to n. 
Since f n = ( n + 1) is a necessary and sufficient condition that n 

be prime, the proposition follows. 

Tm~ AMERICAN CoNSULATF. GF.NF.RAL, 

VANCOUVER, B. C. 
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