The Effects of Ultracentrifuging Germinating Seeds of Onion and Rye

James J. Hilbe
Dowling College
THE EFFECTS OF ULTRACENTRIFUGING GERMINATING SEEDS OF ONION AND RYE

JAMES J. HILBE

Normally, the process of mitosis is an orderly, integrated series of events, that is, karyokinesis and cytokinesis are usually linked together and function as one continuous process. Occasionally, however, either one or both of these processes may be interfered with in some way so that a dissociation takes place between the two. This gives rise to an abnormal situation so that each process may proceed independently of the other or one may be inhibited while the other goes on uninterrupted. The most common abnormal condition of this type is the inhibition of cell cleavage while nuclear division continues, resulting in the production of polyploids. This occurs rarely as a natural phenomenon, but more frequently as the result of disease, or quite commonly under experimental conditions. A few of the experimental agents used for inducing modification or inhibition of cell division are injury, heat, cold, ultraviolet and X-radiations, narcotics, anaesthetics, hypertonic and hypotonic solutions, colchicine, and high centrifugal forces.

Plant tissues have been centrifuged at various speeds by several investigators, namely: Mottier (1899) Andrews (1915) Nemec (1915, 29) Weber (1924) Schaede (1930) Luyet and Ernst (1934) Luyet (1935) Kostoff (1935, 37, 38) Beams and King (1935, 36, 37, 38, 39) and others.

The present experiments were conducted to try to demonstrate cytologically the effects of high centrifugal force upon the tissues of germinating seeds of onion and rye.

The seeds employed for the experiments were White Portugal onion (Allium cepa) and American fall rye (Secale cereale). Seeds were placed in a damp chamber and left in the dark for 20 to 48 hours. By this time they had germinated and grown sufficiently to withstand the experimental conditions. Those seeds of most uniform size and growth were placed in the rotor of the air turbine ultra-centrifuge of Beams, Weed and Pickles (1933). Tap water or starch solution was put into the rotor with the seeds to prevent crushing. Centrifuging was carried on at 50,000 to 150,000 times gravity for 10 to 90 minutes; the longer time and slower speed were found to give better results for this material.
Plate I

The figures are photomicrographs of the cells of onions and rye, 3200X and stained with Heidenhain's hematoxylin.

1. Rye “giant cell.” Material was centrifuged for 20 minutes at 100,000 times gravity and allowed 7 hours recovery. The large, dark area is the nucleus.

2. Onion a. large binucleate cell.
   b. non-nucleate cell.
   c. small binucleate cell.
   d. “giant cell.”
   Material centrifuged at 50,000 times gravity for 90 minutes. (See Fig. 14.)

3 and 4. Onion binucleate cells.
   This is the same material as noted for Fig. 2. (See Figures 15 and 16.)

5, 6 and 7. Onion binucleate cells.
   This is the same material as mentioned for Fig. 2. (See Figures 17, 18, and 19.)

8 and 9. Onion “giant cells.”
   This is the same material as mentioned for Fig. 2. (See Figures 24 and 25.)
Plate II

All of the drawings in this plate are camera lucida drawings of selected areas in the Onion preparations, many of which are the same as the photomicrographs of Plate I. Figure 10 is from control material. Figures 11, 12, 13, 22, and 23 are from material which was centrifuged for 20 minutes at 100,000 times gravity and allowed to recover for 7 hours. Figures 14, 15, 16, 17, 18, 19, 20, 21, 24, and 25 are from material which was centrifuged for 90 minutes at 50,000 times gravity and allowed to recover for 11 hours. All figures are 1000X, except as noted.

10. Normal mitosis in which 2n equals 16.

11. Abnormal mitosis. The spindle is absent and the metaphase plate is incompact. There are 16 double chromosomes which are loosely intertwined.

12. Abnormal mitosis. The spindle is absent and the metaphase plate is incompact. This cell contains 32 chromosomes which are single.

13. Abnormal mitosis. This anaphase cell is tetraploid on each side, due to a fusion of the mitotic figures of a binucleate cell or the mitosis of a "giant cell."

14. A row of abnormal cells. In this figure are shown examples of the result of disturbing mitosis at different stages. In a, a binucleate cell has formed. In b and c, cell division has taken place, but both nuclei have been isolated in one cell, leaving the other non-nucleate. In d, the two nuclei have fused, forming a "giant cell" having approximately double the normal size of nucleus and cell body.

15, 16, 17, 18, 19, 20, 22, and 23. All are binucleate cells.

After centrifuging, the seeds were again placed in a damp cham­
ber (dark) and allowed to recover for periods of 7 to 22 hours.
The tips were then cut off and put into Allen's B₃ fixative. Sec­
tions were cut at 6 microns and stained with Heidenhain's iron­
hematoxylin.

The general effect of centrifugal force upon the cytoplasm and
nucleus of plant cells is to cause a stratification of their com­
ponents in order of their relative specific gravity. This is men­
tioned by Luyet (1935), Kostoff (1937), and Beams and King
(1935). The nucleus or chromatin material generally becomes
concentrated at the centrifugal pole, and the fatty material along
with the spindle materials becomes concentrated at the centripetal
pole. Kostoff (1938) mentions an exception to this general rule.
He found certain cells to have their nuclei toward the centripetal
pole after centrifugation. In my material, the resting nuclei
(which contained diffuse chromatin) were those least effected by
the centrifugal force. This may be due to the chemical condi­
tion of the nucleoproteins. The deeply staining chromatin of the
prophase nucleus which has condensed must be composed of heavi­
er nucleoproteins because of a more complex molecular arrange­
ment. Furthermore, a difference in the viscosity of the cell may
alter to a certain extent the stratification of the various materials.

The application of a force of approximately 50,000 times grav­
ity for 90 minutes produced changes in the cell that interfered
with normal mitosis. This force is insufficient to cause a perma­
nent tissue injury but is sufficient to cause marked cytological
changes in the cells. The time mentioned (90 minutes) is long
enough to centrifuge the root tip, for in that time a number of di­
viding cells will be effected.

**Onion (Allium cepa)**

During the prophase the chromosomes are displaced by ultra­
centrifuging to the centrifugal pole of the nucleus and occasionally
are fragmented. However, cells thus effected will recover and
apparently divide normally.

Application of the centrifugal force in metaphase usually causes
the disappearance of the spindle and produces a loosely arranged
metaphase plate. If the chromosomes have divided, the tetraploid
number is present (Fig. 12), and in the absence of the spindle
they do not separate and no cell plate is formed. (Beams and
King, 1938; Kostoff, 1938). The chromosomes eventually produce
a restitution nucleus that is twice the normal size and, since the
cell has grown without dividing, it also is much larger than the
normal cell. (Such “giant cells” may be seen in Figures 2d, 8, 9, 14d, 24, and 25). Subsequent mitoses contain many more than double the normal somatic number of chromosomes (Fig. 13). If the spindle does not disappear it becomes greatly distorted and the entire mitotic figure may be thrown to the centrifugal end of the cell. Here a more or less normal anaphase and telophase may ensue, but because of the position of the spindle, the resulting daughter cells are of unequal size.

The spindle is harder to displace and seems to be more rigidly situated in the cell in the anaphase than in the metaphase. This substantiates the work of Heilbrunn, (1928), and of Kostoff, (1938), that the viscosity of the cell is higher during anaphase than at any other time. If the force is applied in anaphase before the cell plate has started to form, the spindle (phragmoplast) is displaced to the centripetal end of the cell and no cell plate forms. The two groups of chromosomes then clump separately and become resting nuclei. As no cell plate is formed, a binucleate cell is produced (as in figures 2a, 3, 4, 5, 6, 7, 14a, 15 through 23). These are similar to those found by Beams and King (1938). This is the most abundant type of abnormality found, probably because of the relatively long duration of the anaphase stage in mitosis.

If the pragmoplast has started to differentiate a cell plate, cytokinesis will undoubtedly take place, because the newly forming cell plate is quite stable and apparently not displaced. However, the nuclei will be displaced to the centrifugal pole of the cell and a binucleate cell and a non-nucleate one are formed; both are of normal size (Figures 2b, 2c, 14b, and 14c). The non-nucleate cell apparently dies and disappears from the root tissues.

Rye (Secale cereale)

Observations on the rye were confined to an investigation of the “giant cells” because of the extremely small size of its normal cells. Here, apparently, a different mechanism is disturbed as a result of the centrifuging. If the force is applied in the metaphase, the spindle is destroyed and chromosome division proceeds as in the onion. In later divisions, however, cytokinesis is not restored, and the resulting cell and nucleus are approximately five or six times as large as normal at 17 hours after centrifuging (Fig. 1.).
As previously mentioned, both plant and animal cells have been centrifuged by several investigators. (See Beams and King, 1938 and Kostoff, 1938 for a recent review of the literature). In general it has been shown that the cell materials stratify in the order of their relative specific gravities. In most cases the chromosomes, particularly during mitosis, are displaced to the centrifugal end of the cell. Kostoff (1938), has been able to induce alterations in somatic chromosome sets of various plants. After centrifuging in an ordinary laboratory centrifuge he found that various results had taken place, such as the failure of the chromosomes to separate, of the cell to divide, and injury to the spindle to give rise to various types of polyploid cells. Beams and King, (1938), were able to displace chromosomes or the whole spindle to the centrifugal end of the cell or to cause the disappearance of the spindle in metaphase, in wheat. These conditions give rise to abnormal daughter cells. They were also able to produce binucleate cells by applying centrifugal force in anaphase or telophase before the cell plate had begun to form. The cell plate forming substance or organizer in this case was displaced to the centripetal end of the cell where it was inactivated. They point out that the typical spindle of cytokinesis normally induces cell plate formation. This conforms with the work of Jungers (1931). He worked with the endosperm of Iris. This is a multinucleate and after the last nuclear division, secondary spindles arise alongside of the spindles connecting daughter nuclei. These secondary spindles connect the nuclei with neighboring spindles and meet in the secondary spindles, thus bringing about the inclusion of single nuclei within cell walls. In my material, if the spindle was displaced early enough in the cycle no cell membrane or wall appeared and the spindle and phragmoplast eventually disintegrated.

In general, my work confirms that of Kostoff (1938) and Beams and King (1938).

Conclusions

1. Centrifuging at high speeds stratifies the cell materials in the order of their relative specific gravity. Cells may recover from such treatment.

2. In many cells at metaphase the spindle disappears but the chromosomes divide, giving rise to a tetraploid cell. In other cells the spindle and chromosomes are displaced and the subsequent division results in unequal daughter cells.
3. Cells centrifuged while in anaphase or telophase before the cell plate has begun to form, have the chromosomes or developing nuclei displaced to the centrifugal end of the cell, and the spindle to the centripetal end of the cell, where it seems finally to disintegrate. This condition usually gives rise to a binucleate cell.

4. The cell plate forming substance may be displaced, resulting in a failure of normal cell plate formation.

5. Extremely large "giant cells" are formed in rye as a result of more prolonged inhibition of cytokinesis.

Department of Biology,
Dowling College,
Des Moines, Iowa.

Bibliography


1938 The effect of centrifuging the germinating seeds. Cytologia, 8, 420.
Wilson, E. B. 1925 The cell in development and heredity. Macmillan.