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ON THE INDEPENDENCE OF OPERATORS ON 

A LATTICE 

FRANK HAIGHT 

The operators under consideration will be formed from nine 

basic first order operators. These will, in their turn, be formed by 
combining in several ways one of their number, an undefined op

erator of 'derivation'. Starting with a set A, and the operator d, 
we obtain: 

I. hA = AdA, the concentrated part of A, which is the inter
section of A and dA. 

2. JA = AcdA, the isolated part of A, that part of A which 
is not in dA. 

3. kA, the kernel of A, which is the maximum dense-in-itself 
subset of A. 

4. sA = AekA, the separated part of A. This is the part of 

A which is not in the kernel. 

5. iA = AcdcA, the interior of A. This is the part of A which 
is not in the derived set of the compliment of A. 

6. bA = AdcA, the border of A, which is the part of A that 

is not interior. 

7. cA = A + dA, the extension or closure of A, the sum of A 

and its derived set. 

8. fA = AcdA + cAdA, the frontier of A, which is the sum 
of the border of A and of those parts which are both derived 

points of A and complimentary to A. 

When we wish to refer to any one of these operators we will 

use the letters u and v, and statements involving these letters will 

be understood to be valid for each of the operators. These opera

tions arc performed on elements in a space possessing the follow

ing three properties: 

I. d(A + B) = dA + dB. 
2. d 2AL'.'. dA. 

3. d (0) = 0, for 0 a null element. 

Now, the process of taking compliments is not considered one of 

the basic operations, because of its extreme simplicity. Hence, if 

we let the operators act upon each other in various ways, and call 
an operator of second 'order' whenever it contains exactly two of 

the basic operators, it is clear that all second order operators are 
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of one of the following forms: uv, ucv, cuv, uvc, cuvc, cucv, ucvc, 
and cucvc. The first two of these forms are of special signifi
cance, since any of the others may be obtained from one of them 

by either complementing the set A before applying the operator, 
or complementing the resulting set. Any of the nine first order 
operators may be placed before any other one, and thus 81 opera
tors of the form uv will be obtained. Similarly, there are 81 op
erators of the form ucv. These 162 operators are the subject of 
this investigation. 

Incidental to his doctoral dissertation, Emmet Carson Stopher 
showed, in 1937 that many operators in this collection may be 're
duced'; that is, many of them are exactly equal to some other op

erator of lower order. A rather obvious continuation of his meth
ods reveals that exactly eighty-six are reducible. The proof of 
the irreductibility of the remaining seventy-six is the object of 
this paper. 

To show that any two operators are unequal in general, we need 
but produce a space which, if each of the operators is evaluated 
on it, will yield different values for them. The space will, in fact, 
divide the collection of seventy-six operators into sub-collections in 

this way. We may be confident that no operator in any collec
tion is equal to any other in a different collection. If then, we 
employ succeeding spaces in the same way, the existing collections 
will become more and more split up. vV e should suppose that 
when a collection comes out which contains only one operator, that 
this one is unequal to all the others. This fact depends, however, 
upon whether or not we have the right to consider the spaces si
multaneously. That this is actually the case will be demonstrated 
by the following theorem. 

Theorem: If S = S1 + ... + Sn, and if SiSJ = 0 for all 
i and j, and if dSi < Si, and if each space contains a set with 

corresponding subscript, Si > Ah then u(A1 + ... + An) 
uA1 + + uAn: and also cSt (A1 + ... An)= cS tA1 + ... + 
cS tAn 1 

n 

The proof of this theorem is straightforward, and consists of cal
culating the values of the expressions in question for each of the 
first order operators. Then use may be made of the non-intersec
tion of the sets involved, and the result will follow. 

Following the procedure outlined above, nine spaces will suffice 
to show each of the seventy-six operators are independent of all 
the others. 
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SPACE ONE 

The first has but one part, X, with the characteristic that 
dX = X. An operator may have the value X or 0 on X and 
X or 0 on 0. Thus our operators fall into four collections con
taining 12, 12, 8 and 44 operators. 

SPACE Two 

This space also has but one part, X, but dX = 0. It has the 
effect of further splitting the operators into nine collections. 

SPACE THREE 

Having exhausted all possible spaces with but one part, space 
three is the first with two parts, X and Y. dX = Y and dY = 0. 
This time, thirteen of the operators become independent, while the 
remainder are contained in fifteen different collections. 

SPACE FouR 

dX = Y, dY = Y. This space leaves independent fourteen 
operators, and increases the number of collections to nineteen. 

SPACE FrvE 

dX = X + Y, dY = 0. Ten more operators become inde
pendent under this criterion, and the number of collections is re
duced to fifteen. Each of these, naturally will now contain a very 
few operators, and the number of them will reduce substantially 
with further spaces. 

SPACE Srx 

dX = S, dY = Y. Only two operators are reduced in this 
space, and the number of collections is now fourteen. 

SPACE SEVEN 

dX = X + Y, dY = X + Y. Three more operators become 
independent, and the number of collections becomes thirteen. It 
can easily be seen that any other second order space would be re
dundant upon one of those already used, or would be incompatible 
with the postulates. For this reason, the two remaining spaces 
to be used will be of the third order. 

SPACE EIGHT 

This space contains parts X, Y and Z with the following rela
tionships among them: dX = Y + Z, dY = Z and dZ = 0. It 
has the effect of eliminating from consideration twenty-two oper
ators, and of reducing the number of collections to three. 
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SPACE NINE 

dX = X + Y + Z, dY = Z and dZ 
effect the final separations desired. 

0. This space will 

We may now use the fundamental theorem, and form a space 
consisting of spaces one through nine, with the assurance that in 
this larger space, each operator under consideration will have a 
value separate from any other. 

This result, together with the reductions obtained by Stopher or 
by his method constitute what might be called a complete classifi
cation of all second order operators of basic type formed from tne 
nine operators in question. 

DEPARTMENT OF :MATHEMATICS, 

UNIVERSITY oF IowA, 

IowA CITY, IowA. 
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