[Proceedings of the Iowa Academy of Science](https://scholarworks.uni.edu/pias)

[Volume 59](https://scholarworks.uni.edu/pias/vol59) [Annual Issue](https://scholarworks.uni.edu/pias/vol59/iss1) Article 40

1952

Conjugate Points of Singular Quadratic Functionals for N Dependent Variables

John O. Chellevold Wartburg College

[Let us know how access to this document benefits you](https://scholarworks.uni.edu/feedback_form.html)

Copyright ©1952 Iowa Academy of Science, Inc. Follow this and additional works at: [https://scholarworks.uni.edu/pias](https://scholarworks.uni.edu/pias?utm_source=scholarworks.uni.edu%2Fpias%2Fvol59%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Chellevold, John O. (1952) "Conjugate Points of Singular Quadratic Functionals for N Dependent Variables," Proceedings of the Iowa Academy of Science, 59(1), 331-337. Available at: [https://scholarworks.uni.edu/pias/vol59/iss1/40](https://scholarworks.uni.edu/pias/vol59/iss1/40?utm_source=scholarworks.uni.edu%2Fpias%2Fvol59%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Research is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

[Offensive Materials Statement:](https://scholarworks.uni.edu/offensivematerials.html) Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Conjugate Points of Singular Quadratic Functionals for N Dependent Variables⁰ ^l

By JoHN 0. CHELLEVOLD

INTRODUCTION

Morse and Leighton (Singular quadratic functionals. Transactions of the American Mathematical Society, volume 40 (1936) pp. 252-286) gave a systematic approach to the problem of minimizing a singular quadratic functional for one dependent variable considering integrands of the type

 $f(x, y, y') = r(x) y'^2 + 2q(x) y y' + p(x) y^2$

where r, q, and p are single-valued continuous functions of the real variable x on the interval $(0, d)^{(2)}$ and r is positive. They defined first conjugate point of the singular point $x = 0$. They defined minimum limit of a functional and determined conditions under which [0, b] would afford such a limit to a functional among several classes of comparison curves.

In this paper we extend to n dependent variables the definition of a conjugate point and the analogue of the Jacobi necessary condition. Criteria will be presented for locating conjugate points.

The repeated suffix notation for summation and the notation $f(x, y, y')$ for $f(x, y_1, \ldots, y_n, y'_1, \ldots, y'_n)$ will be used. Summations will in general be from 1 to n.

1. *The functional.* Let

(1.1) $2\Omega(x,y,y') = r_{i j} y'_{i} y'_{j} + 2q_{i j} y'_{i} y_{j} + p_{i j} y_{i} y_{j}$ (i, j = 1, ..., n) where r_{ij} , q_{ij} , and p_{ij} are functions of class C^1 of the real variable x on $(0,d)$ and $r_{ij} \pi_i \pi_j > 0$ for $0 < x \leq b$ and for every set $(\pi) \neq 0$. The constant b is fixed but arbitrary on the interval $(0, d)$. We consider the functional

(1.2)
$$
J(y) \bigg|_{e}^{b} = \int_{e}^{b} 2 \Omega(x, y, y') dx \qquad (0 < e < b < d).
$$

We call $y_i(x)$ and the curve $y_i = y_i(x)$ C - admissible on $[0, b]$ if

-
- (a, b) means the interval $a < x \le b$,

(a, b) means the interval $a \le x < b$,

[a, b) means the interval $a \le x < b$.

^{&#}x27;The results of this paper were included in a doctoral thesis written under the direction of Professor A. E. Pitcher.

²In future discussions intervals will be designated as follows:

[[]a, b] means the interval $a \le x \le b$,
(a, b] means the interval $a < x \le b$,

332 IOWA ACADEMY OF SCIENCE Vol. 59

1. $y_i(x)$ are continuous on the closed interval [0, b] and $y_i(0)$ $=$ y_i(b) = 0;

2. $y_i(x)$ are absolutely continuous on each closed subinterval of $(0, b].$

It will be observed that the segment $[0, b]$ of the x - axis is C $-$ admissible and that on this segment $J = 0$. If

$$
\liminf_{x \to 0} \int_{x}^{b} \Omega(x, y, y') dx \ge 0 \qquad x > 0
$$

holds for each curve $y_i = y_i(x)$ of a given class we say that [0, b] affords a minimum limit to J among curves of the given class.

We seek an analogue to the Jacobi necessary condition. The Euler equations, and also the Jacobi equations, take the form

(1.3)
$$
\frac{d}{dx} (r_{ij} y'_j + q_{ij} y_j) - (q_{j1} y'_j + p_{ij} y_j) = 0
$$

(i, j = 1, ..., n).

The determinant of the coefficient of y'' of this system of linear homogeneous differential equations is $|r_{ii}|$. To every solution $y_i(x)$ of (1.3) we set

$$
(1.4) \qquad \qquad \zeta_i^{\,y} = \mathbf{r}_{i\,\mathbf{j}}\,\mathbf{y'}_{j} + \mathbf{q}_{i\,\mathbf{j}}\,\mathbf{y}_{j}
$$

It is a well known fact that if (η_1, ζ_1) and (η_2, ζ_2) are two solutions of the Jacobi equation then

(1.5) $\eta_{1i}(x) \zeta_{2i}(x) -\zeta_{1i}(x) \eta_{2i}(x) = \text{constant}.$

If this constant is zero, we call the two solutions conjugate. Form the determinant

(1.6) $D(x, c) = |v_{i,j}(x, c)|$

of which the columns are solutions of the Jacobi equations for a constant c and which satisfy the initial conditions

(1.7) $v_{ij}(c, c) = 0, v_{ij}(c, c) = \delta_{ij}$ (i, j = 1, ..., n) where δ_{ij} is the Kronecker delta. It will be observed that the columns of $D(x,c)$ are mutually conjugate solutions.

A system of n linearly independent mutually conjugate solutions will be called a conjugate base. The set of all solutions dependent on the solutions of a conjugate base will be called a conjugate family. We shall refer to the determinant of a conjugate base. By this shall be meant the determinant

$$
(1.8) \t\t\t D(x) = |\eta_{ij}(x)|
$$

for which the columns are solutions from a given base. If $D(x)$ vanishes to the rth order at $x = a$ then $x = a$ will be called a focal point of the rth order of the given family. If a focal point $x = c$ of a conjugate family F is of order n, then the focal points of F other than $x = c$ are the conjugate points of $x = c$.

1952] SINGULAR QUADRATIC FUNCTIONALS 333

A very useful separation theorem for future use may be stated as follows: *Theorem 1.1.* The number of focal points of any conjugate family on a given interval (open or closed at either end) differs from that of any other conjugate family by at most n.

2. *Definition of conjugate points*. The conjugate point for a singular quadratic functional will be defined so that the known classical results for the non-singular case are included in the derived results. Let $0 < a < b$. Let $x_1(a) \le x_2(a) \le ... \le x_n(a)$ be the first q conjugate points of $x = a$ that follow a, if these conjugate points exist. Conjugate points of order r will be counted as r conjugate points. It is known that the qth conjugate point of $x = a$ following $x = a$, if it exists, advances or regresses continuously with $x = a$. We therefore define the qth conjugate point of $x = 0$ as the limit of $x_q(a)$ as a tends to zero. Let

(2.1)
$$
x_q = \frac{\lim}{a=0} + x_q(a)
$$
.

If $x_1(a)$ exists for no value of a on $(0, b)$, $x = 0$ will be said to have no conjugate point on $[0, d)$. It should be noted that x_1 may coincide with $x = 0$. Necessary and sufficient condition for this to happen will be found later.

3. *An analogue oj the Jacobi necessary condition.* We recall our definition of C - admissible curves and now prove the following theorem.

Theorem 3.1. If $[0, b]$ affords a minimum limit to J among Cadmissible curves, there can be no point conjugate to $x = 0$ on the interval $[0, b)$.

Proof: Let $h > 0$. If $x = 0$ has a conjugate point on [0, b) then $x = h$ will have a conjugate point on (h, b) if h is sufficiently small. Consider the class of C.admissible curves on [O, b] which follow the segment of the x-axis from $x = 0$ to $x = h$. By hypothesis $[0, b]$ affords a minimum limit to J for this class of curves. But the part of the curves from $x = 0$ to $x = h$ contributes nothing to J and [h, b] affords a minimum among absolutely continuous curves joining points $x = h$ and $x = b$ on the x-axis. Hence a point conjugate to $x = h$ cannot exist on (h, b) and the theorem follows at once.

4. *Theorems on conjugate points.* We state the following theorem. *Theorem 4.1.* If $x = 0$ has no conjugate point on $(0, b)$ there is a conjugate family with no focal points on $(0, b)$.

Proof: Let the determinant

(4.1) $D(x, b) = |y_{1i}(x, b)|$ $(i, j = 1, ..., n)$ where $y_{ij}(b, b) = 0$ and $y_{ijx}(b, b) = -\delta_{ij}$ be the determinant of a

334 IOWA ACADEMY OF SCIENCE [Vol. 59]

conjugate base of family F . It is asserted that family F is a family satisfying the conditions of the theorem. For, let $0 < h < b$, h being otherwise arbitrary. Suppose $D(x, b)$ vanishes at some point $x_0, h < x_0 < b$. But $x = h$ has no conjugate point on (h, b) while $D(x, b)$ vanishes at least $(n + 1)$ times in that interval. This contradicts Theorem 1.1. The proof of the theorem is complete.

Morse and Leighton have shown for $n = 1$ that if $x = 0$ is not its own conjugate point there exists a solution $w(x) \neq 0$ of the Euler equations such that the first conjugate point of $x = 0$, if it exists, is the first position zero of $w(x)$. This result can be generalized. To shorten the proof it will be convenient to first state some results that will be used.

We shall say that conjugate systems $u_{ij}(x)$ and $v_{ij}(x)$ form a *double* conjugate system if

$$
\begin{array}{lll} \text{(4.2)} & \text{ } &
$$

Such systems exist as is shown in Hadamard (page 344, Lecons Sur Le Calcul Des Variations. Tome Premier. Librairie Scientifique. A. Herman et Fils, 1910). Let

$$
(4.3) \t\t\t A = \begin{pmatrix} u & v \\ \zeta^u & \zeta^v \end{pmatrix}
$$

be a 2n by 2n matrix where the elements are n by n blocks formed as indicated. Let

$$
(4.4) \qquad \qquad V = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$

be a 2n by 2n matrix in the same block arrangement. Then V^{-1} = $-V_z$

By the results of Morse and Pitcher (On certain invariants of closed extremals. Proceedings of the National Academy of Sciences, vol. 20 (1934) pp. 282-288) it is known that for a double conjugate system

$$
(4.5) \t\t\t ATVA = V
$$

where A^T denotes the transpose of matrix A . The following lemma will be used in the proof of the next theorem.

Lemma 4.1 The matrix $\int_{-\ell}^{\ell} \int_{x_{ik}}^{x_{ik}} -v_{ik}^{T_{ik}} \int_{x_{ik}}^{x_{ik}}$ is the inverse of matrix

$$
A = \begin{pmatrix} u_{ij} & v_{ij} \\ \zeta^{u}_{ij} & \zeta^{v}_{ij} \end{pmatrix}
$$

Proof: From (4.5) it follows that

1952] SINGULAR QUADRATIC FUNCTIONALS 335

(4.6)
$$
A^{-1} = V^{-1} A^{T} V = \begin{pmatrix} \zeta^{T} & -V^{T} \\ -\zeta^{T} & u^{T} \end{pmatrix}
$$

This completes the proof of the lemma.

We now proceed to prove an important theorem.

Theorem 4.2. If $x = 0$ is not its own conjugate point $(x_1 > 0$ if it exists) there exists a conjugate system y_{ii} of extremals such that $|y_{ij}(\mathbf{x})| = 0$ $0 < x \leq h$

if and only if $x = x_q$, the multiplicity of the zeros of $|y_{1j}(x)|$ and of the conjugate points of zero being the same.

Proof: This theorem reduces to Theorem 4.1 if $x = 0$ has no conjugate point on $[0, b)$. Accordingly the proof is limited to the case that x_1 exists and $x_1 > 0$.

Choose a double conjugate system $u_{ij}(x)$, $v_{ij}(x)$ as given in (4.2). Then at $x = a$ form equations

(4.7)
$$
u_{ij}(a) A_{jk} + v_{ij}(a) B_{jk} = 0
$$

$$
\zeta^{u}_{ij}(a) A_{jk} + \zeta^{v}_{ij}(a) B_{jk} = \delta_{ik}.
$$

Recalling Lemma 4.1 it can be seen that equations (4.7) have unique solutions

(4.8)
$$
A_{jk}(a) = -v_{kj}(a), B_{jk}(a) = u_{kj}(a).
$$

Set

(4.9)
$$
\rho(x) = \sqrt[n]{(u_{ik}(x))^2 + v_{jk}(x))^2} \neq 0
$$
where summation is on both j and k from l to n,

$$
a_{jk}(x) = \frac{-v_{kj}(x)}{\rho(x)}, b_{jk}(x) = \frac{u_{kj}(x)}{\rho(x)}.
$$

Then

$$
(4.10) \qquad \qquad \Sigma a^2_{jk}(x) + \Sigma b^2_{jk}(x) = 1.
$$

As we are dealing with compact sets we may form convergent subsequences of the sets a_{ik} and b_{ik} . There exists a sequence h_q converging monotonically to zero such that each sequence $a_{ij}(h_q)$, $b_{ij}(h_q)$ is -convergent.

Set

(4.11)
$$
a_{i j q} = a_{i j} (h_q)
$$

\n $b_{i j q} = b_{i j} (h_q)$
\nLet $\lim a_{i j q} = \alpha_{i j}$ and $\lim b_{i j q} = \beta_{i j}$. Then
\n $q \to \infty$
\n(4.12) $\sum \alpha^2_{i j} + \sum \beta^2_{i j} = 1$ (i, j = 1, ..., n).
\nSet
\n(4.13) $y_{i k q}(x) = u_{i j}(x) a_{j k q} + v_{i j}(x) b_{j k q}$
\n $\zeta_{i k q}(x) = \zeta^{u}_{i j}(x) a_{j k q} + \zeta^{v}_{i j}(x) b_{j k q}$
\n $y_{i k}(x) = u_{i j}(x) a_{j k} + v_{i j}(x) \beta_{j k}$
\n $\zeta_{i k}(x) = \zeta^{u}_{i j}(x) a_{j k} + \zeta^{v}_{i j}(x) \beta_{j k}$.

336 IOWA ACADEMY OF SCIENCE

$$
[Vol. 59]
$$

Then

$$
y_{ikq} \rightarrow y_{ik}, \zeta_{ikq} \rightarrow \zeta_{ik}
$$

 $y_{ikq} \rightarrow y_{ik}$, $\zeta_{ikq} \rightarrow \zeta_{ik}$
and y_{ik} has the desired properties if $x_1 > 0$.⁽³⁾ For, let $0 < x_0 <$ x_1 . Consider problem q as

(4.14)
$$
J_q(y) = y_{ijq}(x_0) \zeta_{ikq}(x_0) c_j c_k + \int_{x_0}^{b_1} 2 \Omega dx
$$

$$
y_i(x_0) = y_{ijq}(x_0) c_j, y_i(b_1) = 0.
$$

The focal points for this problem are the conjugate points of h_q and the zeros of $|y_{ij}(x)|$.

Suppose $x_0 < b_1 < x_1$. Then $J_{\alpha}(y) > 0$ for all y satisfying con-

\n divisions (4.14). Hence, by continuity consideration\n
$$
J(y) = y_{ij}(x_0) \zeta_{ik}(x_0) \, c_j \, c_k + \int_{x_0}^{b_1} 2 \, \Omega \, dx
$$
\n

is non-negative subject to

 $(y_1(4.15)'$ $y_i(x_0) = y_{i,i}(x_0) c_i, y_i(b_i) = 0.$

Equations (4.15) and $(4.15)'$ will be referred to as problem O. Hence, there is no zero of $|y_{i,j}(x)|$ on $x_0 < x < b_1$. Since b_1 is arbitrary there is no zero on $x_0 < x < x_1$. As a matter of fact x_0 is also arbitrary so there is no zero on $0 < x < x_1$. More generally if $x_r < b_1 < x_{r+1}$ and $0 < x_0 < x_1$ the Morse index [The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, vol. XVIII, Chapter III] of problem q is r provided q is chosen so large that $x_r(h_q) < b_1$. Hence the index of problem 0 is also r, as can be seen by the use of the Morse index form. The zeros of $|y_{i,j}(x)|$ on $x_0 < x < b_1$ are therefore r in number counting multiplicity. Again x_0 is arbitrary. So there are r zeros of $|y_{1j}(x)|$ on $0 < x < b_1$.

This result is obtainable without the use of the Morse index form. For example, by choosing $x_r < x_0 < b_1 < x_{r+1}$ if $x_r < x_{r+1}$, it is seen as above | $y_{ij}(x)$ | has no zeros on $x_r < x < x_{r+1}$. If m is the greatest integer less than r such that $x_m < x_r$ and if $x_r < x_{r+1}$, then by choosing

 $x_m < x_o < x_r < b < x_{r+1}$ it is seen that $|y_{ij}(x)|$ has an r - m fold zero at xr.

The case where $r_{ij} = 0$ if $i \neq j$, $q_{ij} = q_{ji}$, and $q'_{ij} = p_{ij}$ if $i \neq j$ j will be called the *separated case*. If $x = 0$ is not its own conjugate point the determinant of Theorem 4.2 takes a diagonal form as ex· pressed by the following theorem which will be stated without proof. *Theorem 4.3.* If $x = 0$ is not its own conjugate point in the separat-

³The proof from this point on was suggested by Prof. M. R. Hestenes.

1952] SINGULAR QUADRATIC FUNCTIONALS 337

ed case the determinant of the conjugate base which vanishes at the conjugate points of $x = 0$ will be of the form

$$
(4.16) \t |y_{ij}(x)|
$$

where $y_{ii} = 0$ if $i \neq j$.

Whether or not $x = 0$ is its own conjugate point can be determined by investigating the number of conjugate points that exist for an arbitrary value $x = k > 0$ in the interval $(0, k)$.

Theorem 4.4. Let k be an arbitrary constant $0 < k < d$ and F^k be the conjugate family whose base determinant $D(x, k) = |y_{ij}(x, k)|$ where y_{1i} (k, k) = 0 and ζ_{1i} (k, k) = δ_{1i} . Then $x = 0$ is its own conjugate point if and only if $x = k$ has an infinite number of conjugate points on $(0, k)$.

Proof: Let $0 < h < k$. Form the conjugate family F^h whose base determinant is $D_1(x, h) = |u_{1i}(x, h)|$ where $u_{1i}(h, h) = 0$ and ζ_{ii} (h, h) = δ_{ii} . By hypothesis D(x, k) vanishes infinitely often in the interval $(0, k)$. Hence, by separation theorem (1.1) $D_1(x, h)$ must vanish infinitely often in that interval and $x = 0$ is its own conjugate point.

Conversely. If $x = 0$ is its own conjugate point then corresponding to $e > 0$ there is an h with $0 < h < e$ such that $x_1(h) < e$. Then $D_1(x, h)$ vanishes at least $n + 1$ times on [h, e] so that $D(x, k)$ vanishes on that interval by virtue of Theorem 1.1. Since e is arbitrary, $D(x, k)$ vanishes infinitely often on $(0, k)$.

WARTBURG COLLEGE WAVERLY, lowA