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ABSTRACT 

A comparison was made between predicted and measured odor concentration 

downwind of two hog finishing confinements. Two Gaussian dispersion models, 

STINK.BAK and AERMOD, were used. The experimental cases examined odor 

emanating from a mechanically-ventilated facility and a curtain-sided facility during 

summer 2003. A field olfactometer was used to measure odor concentration. The odor 

concentrations served as input to STINK.BAK, which then estimated the odor emission 

rate from the confinement. AERMOD used this emission rate and other meteorological 

data to predict the peak concentration of odor around the confinement over the sampling 

hour. 

The calculated odor emission rates are slightly higher than those reported in the 

literature. At 25°C, the odor emission rate is estimated at 27.8 OU/m2/s for the 

mechanically-ventilated confinement and 32.7 OU/m2/s for the curtain-sided 

confinement. Odor release from the curtain-sided confinement was found to be higher 

than the mechanically-ventilated facility. A correlation with ambient temperature was 

observed. 

Measured concentrations were compared to predicted peak concentrations over 

the sampling hour. The forecast odor plume compared well to the observations. The 

importance of the meteorological information was shown to be of primary importance in 

plume forecast accuracy. 
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CHAPTER 1 

INTRODUCTION 

1 

Livestock in general and hogs in particular in the United States are essential to the 

nation's economic well being, contribute to the vitality of rural communities, and ensure 

the sustainability of America's food supply. Today, the United States ranks second in the 

world in production, consumption, and exportation of pork and pork products. The 

American hog herd stands at nearly 60 million animals, 68% of which are raised in the 

Com Belt. Iowa leads the nation in pork production with 15.8 million hogs (Iowa 

Agricultural Statistics Service, 2003). 

Pork production has dramatically changed in the last few decades. The number of 

small, family farms has decreased while factory farms, also known as concentrated 

animal feeding operations (CAFOs), have multiplied. In 2000, over half of the hogs (50 

million head) delivered to market were from only 156 corporate operations (Plain and 

Lawrence, 2003). Over the past few years, the expansion of corporate farming has 

become a major environmental concern in Iowa and across the nation. Expansion of 

residential developments into rural Iowa along with a growing number of CAFOs have 

led to increasing conflict due to public concern over water and air quality issues 

(greenhouse gas emissions, allergens, dust). Odor pollution is also becoming a serious 

point of contention between farmers and their neighbors. Siting of new hog confinements 

often raises public concern, especially because of the potential loss in property value and 

the effect on health and quality of life. 
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Agricultural odor production has received increasing attention from researchers in 

recent years. Odor production is a complex process (Fig. 1 ). The origin, emission, and 

dispersion of odors are described in the following literature review. As a complement to 

these studies, this research evaluates odor dispersion predictions from the AERMOD 

computer model by using odor measurements taken with a field olfactometer downwind 

of hog confinements. 

Odor (H2S, NH3, CH4, etc) 
Greenhouse gases (CO2, N2O) 
Dust, 
Allergens 

I 

t Wet Deposition 
(washout, rainout) 

Land application 
of manure 

Manure 

Air emissions from 
multiple sources l 

Waste lagoon 

Transport of gases 
and oxidation 

I 

.... 

Dry deposition of 
particles and gases to 

land surfaces 

l 
--------

Fig. 1. Fate and transport of air emissions associated with hog production (adapted from 
Schnoor et al., 2002). 
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Statement of Problem 

The goal of this project is to study the dispersion of odorous plumes from hog 

confinements via two computer models, STINKBAK and the AMS/EPA Regulatory 

Model (AERMOD). Little research has been published on the performance of either 

model for agricultural sources and no previous work has coupled the models. Moreover 

this research focuses on the differences between two swine finishing facilities with 

different ventilation techniques (mechanical and natural). In this study, STINKBAK is 

used to estimate the odor emission rate from a confinement. This approach uses the 

concentration of odor at a downwind location (as measured with a field olfactometer) and 

the local wind as inputs. AERMOD then uses this emission rate and other meteorological 

data to predict the peak concentration of odor around the facility over a I-hour period. 



CHAPTER2 

LITERATURE REVIEW 

Odor Formation 

4 

Odors from swine production operations come predominantly from the microbial 

decomposition of the excreta of the animals. Anaerobic reactions begin in the hog's 

intestines and continue after excretion. Six groups of swine fecal bacteria have been 

isolated: lactose fermenters, nonlactose fermenters, Clostridium sp., Lactobacillus sp., 

Enterococci and Staphylococcus sp. (Zhu, 2000). In a first step, bacteria metabolize 

complex organic substrates into intermediate molecules such as alcohols, aldehydes, 

organic acids, peptones, sulfides, etc. Then, only if the environmental conditions are 

favorable, end-products are formed ( carbon dioxide, ammonia, methane, hydrogen 

sulfide, and water), as depicted in Fig. 2. These end-products are the main constituents 

emanating from CAFOs, but not the most problematic. Usually, the intermediates are 

much more odorous than the final products. It is important to promote complete 

digestion by the bacteria in order to reduce odor emission from swine facilities. Bacterial 

populations will vary according to the environmental conditions, generating differing 

amounts and types of odor. Environmental parameters, such as moisture content, 

temperature, pH, or oxygen concentration can greatly affect odor production by 

modifying the microbial activity. Another parameter to take into account is diet, which 

determines manure composition and, hence, odor generation (Ni et al., 2000; Powers, 

1998). 



COMPLEX SUBSTRATE (MANURE) 

/l ~ 
Carbohydrate Lipid Protein 

! ! ! 
Alcohols, aldehydes, 

Alcohols, 
peptones, peptides, amino 

ketones, organic acids acids, mercaptans, sulfides, 
acetate phenols, volatile fatty acids 

! ! ! 
Ammonia, methane, hydrogen sulfide, carbon dioxide and water 

Fig. 2. Degradation pathways that generate odorous compounds (Powers, 1998). 

Olfactometry 

5 

A considerable amount of research has been conducted on the odorants emitted 

from swine facilities. A total of 411 gases, including 331 volatile organic compounds 

(VOCs) and fixed gases, have been found in odorous emissions from swine operations in 

North Carolina (Schiffman et al., 2001). Many of them have an odor detection threshold 

of less than 1 µg/m3 of air, meaning that humans are very sensitive to a great number of 

volatile compounds released from swine facilities. An odor is actually the sensation that 

occurs when a mixture of odorants impacts the sensory receptors in the nasal cavity. The 

odor from CAFOs is very complex because each individual compound presents unique 

sensory properties. Table 1 summarizes the main odorants contributing to odor in swine 

production facilities, their odor detection threshold, and their odor characteristics. Some 

of the most objectionable gases are the fatty acids, including acetic acid, butyric acid, and 
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Table 1 
Odor characteristics and olfactory threshold for gases identified from air samples at swine 
production facilities (adapted from Schiffman et al., 2001) 

Chemical name Odor detection Sensory and odor 
threshold (µg/m3) characteristics 

Volatile organic compounds 
Acetaldehyde 186 Green sweet 
Acetone 14,500 Irritant 
Benzene 3,630 Solvent 
Ethanol 28,800 Sweet 
Formaldehyde 871 Hay, straw like, pungent 
Methanol 141,000 Sweet 
Phenol 110.0 Medicinal 
p-Cresol 1.9 Irritant, pungent 
Toluene 1,550 Solvent 
n-Pentane 31,600 Irritant 

Volatile nitrogen compounds 
Ammonia 5,750 Pungent 
Methylamine 18.6 Irritant, putrid, fishy 
Trimethylamine 30.9 Irritant, ammoniacal, fishy 
Indole 0.031 Intense fecal 
Pyridine 85.l Irritant burnt, sickening 
Skatole 0.56 Stench, fecal 

Volatile fatty acids 
Acetic acid 145.0 Irritant, pungent 
n-Butyric acid 3.9 Rancid butter 
Laurie acid 24.6 Irritant, pungent 
Isobutyric acid 19.5 Rancid butter 
Isovaleric acid 24.6 Stinky feet, cheese 
Propionic acid 35.5 Irritant, pungent 
n-Valeric acid 4.8 Putrid, fecal smell 

Volatile sulfur compounds 
Methyl sulfide 12.3 Stench, decayed vegetables 
Methyl disulfide 2.2 Putrid, garlic 
Hydrogen sulfide 17.8 Rotten eggs 
Phenyl sulfide 1.0 Unpleasant odor 
Ethyl mercaptan 1.1 Earthy, sulfidy 
Allyl Mercaptan 0.39 Stench 



propionic acid; sulfur compounds such as hydrogen sulfide and methyl disulfide; and 

nitrogen compounds including ammonia, skatole, and indole (Spoelstra, 1980). 

7 

Research on analytical methods for malodor detection has been conducted for 

many years in order to determine if an odor can be monitored or described via one or 

more of its key components. Hydrogen sulfide and ammonia are often cited as odor 

indicators but do not seem very suitable. DeBode (1991) found that by covering manure 

storage units, ammonia emissions were reduced from 75% to 100% while odor intensity 

was only reduced from 28% to 72%. Both gas emissions and odor intensity were 

reduced, but in significantly different amounts. Earlier, Spoelstra (1980) reported that 

ammonia and hydrogen sulfide were not appropriate as odor indicators because they do 

not reflect the kinetic degradation of manure. Indeed, ammonia comes from urea 

hydrolysis and not from excreta decomposition and a large part of hydrogen sulfide is 

derived from sulfate reduction. Moreover, some combinations of gases may be more or 

less odorous than the sum of the individual gases due to synergetic or antagonist 

interactions. Thus, studying an odor requires understanding the odor as an entity and not 

as individual odorants. 

The only instrument that can correctly measure an odor is the human nose. 

Therefore, olfactometry, the psychophysical technique that utilizes the human sense of 

smell to determine odor concentration, is used as the basis of odor management by 

regulatory authorities. Several types of equipment, called olfactometers, have been 

developed in order to reduce the degree of uncertainty and subjectivity associated with 

odor measurement. In traditional olfactometry, a sample of odorous air with varying 
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dilutions is presented to a human panel. Panelists decide if they can detect the odor or 

not. In an olfactometer, odorous air is diluted with fresh air. The strength of the odor is 

designated as the greatest dilution that still results in odor detection. The dilution at 

which the majority of people first detect the odor becomes the dilution-to-threshold (D/T) 

for that sample. It is important to note the difference between the detection threshold and 

the recognition threshold (R/T), which is the dilution at which assessors are able to 

identify and describe the odorant's characteristics. In olfactometry, the assessor is asked 

to detect an odor but not to recognize it. The odor intensity is expressed as its D/T, where 

higher D/T equals higher odor intensity. The unit for odor concentration is odor units per 

unit air volume (OU/m3
) according to CEN (1999) standards but commonly expressed as 

OU in North America. It is defined as the volume of filtered air required to dilute a 

volume of odor until the detection threshold of the odor is obtained. The terms D/T and 

OU will be used interchangeably in this paper since they represent the same concept 

(Mahin, 2003). 

Dynamic Dilution-Olfactometer 

Dynamic olfactometry conducted in a controlled environment is the most popular 

method for measuring odor concentration because it is the most reliable. The panelist 

does not experience odor fatigue. In this method, odorous air is collected in Tedlar or 

PVC bags and later analyzed in a lab. There, panelists determine the detection threshold 

of the odor. Most dynamic dilution-olfactometers are based on the principle of the 3-port 

forced-choice method of sample presentation, which is also referred to as Triangular 

Forced-Choice Dynamic Olfactometry. Each panelist sniffs through three ports (two 
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have clean, odor-free air and one has the odorous mixture) and determines if an odor is 

detectable in one of them. If they do not indicate the right port, the dilution is decreased 

and panelists again sniff the mixture (Chen et al., 1999). Dynamic olfactometry is 

considered the industry standard for measuring odor concentration. However, it is both 

time consuming and expensive. Van Harreveld (2003) noted numerous issues associated 

with the storage of odor samples in bags. He found that particulates removed during 

sampling caused the odor concentration in the bags to be reduced by approximately 20 %. 

Also, there is no standard design for the dilution equipment, so different labs can give 

different results for the same sample (Dravniek and Jarke, 1980; Jones et al., 1994; 

Schultz and van Harreveld, 1996). 

Field Olfactometer 

In the late 1950's, the United States Public Health Service sponsored the 

development of a handheld field instrument for odor measurement. The first field 

olfactometer, manufactured in 1960 by the Barnebey Sutcliffe Corporation, was known 

as the Scentometer. The original Scentometer, which consisted of a small box with 

sniffing ports, provided only four dilution factors. The method of producing D/T with 

this equipment consists of mixing two volumes of carbon-filtered air (non odorous air) 

with specific volumes of odorous air. The dilution-to-threshold is: 

Dilution Ratio (D/T) = Volume of carbon-filtered airNolume of odorous air (1) 

Since then, further research has enabled improvement in the accuracy and 

capabilities of the field olfactometer. The inlet ports now have a series of orifices with 

differing diameters that allow for a variety of dilutions, typically from 2 to 350. 



Olfactometry in the field presents its own set of problems. Being on site may bias 

the panelists because they anticipate odor, especially near the odor source. Moreover, it 

is difficult to use the device for a long time without experiencing odor fatigue. However, 

a study conducted by McGinley and McGinley (2003) showed that the threshold values 

obtained by field and laboratory olfactometry are consistent with the published threshold 

for hydrogen sulfide. Field olfactometry is also the least expensive and easiest technique 

for quantifying odor concentration. 

Currently, thirteen U.S. states and several cities in North America use field 

olfactometers when determining compliance with odor regulations and ordinances 

(McGinley and McGinley, 2003). Table 2 contains a list of states that use field 

olfactometry as a standard, as well as the regulatory limit of odors in terms of D/T. In the 

early years of using the Scentometer (Huey et al., 1960), several adjectives were used to 

qualify the intensity of an odor as a function of the D/T's (see Table 3). These 

associations are still valid. Odor laws are established based on the D/Ts (McGinley et al., 

2000). When concentrations higher than the regulatory D/T are measured, complaints 

can be recorded. The odor standard is highly variable from state to state and city to city. 

Iowa has no state odor regulation but some municipalities within the state do and use 

field olfactometers to estimate odor intensity. From 1 January 1994 to 15 October 2001, 

306 odor complaints involving CAFOs in Iowa were recorded. Of these, 86.9% involved 

swine operations (Hoff et al., 2002). Mal odor from hog operations is one of the main air 

pollution issues in Iowa, but the state does not presently regulate odor, ammonia, or 

hydrogen sulfide. 



Table 2 
Summary of odor standards in the United States using a field olfactometer 
(adapted from Mahin, 2001; Sweeten, 1990) 

Regulatory limit (D/T) 
State or political division 

Residential Commercial 

States 
Colorado 7 7 
Connecticut 7 7 
Illinois 8 8 
Kentucky 7 7 
Massachusetts 5 5 
Missouri 7 7 
New Jersey 5 5 
North Dakota 2 2 
Nevada 8 8 
Oregon 
Wyoming 7 7 

Cities or air quality regions 
District of Columbia 1 1 
Dallas, Texas 2 1 
Oakland, California 50 50 
San Diego, California 5 5 
Southwest Washington State 

1-2 1-2 AQMA 
Seattle, Washington 5 5 
Polk County, Iowa 7 7 
Cedar Rapids, Iowa 4 8 
Omaha, Nebraska 4 8 
Chattanooga, Tennessee 0 4 

Table 3 
D/T as a function of the odor intensity (McGinley et al., 2000) 

Dilution-to-threshold (D/T) 

2 
7 

15 
31 

Description 

Noticeable 
Objectionable 
Nuisance 
Nauseating 

Industrial 

15 
7 

24 
7 
5 
7 
5 
2 
8 
2 
7 

1 
1 

50 
5 

8-32 

5 
7 

20 
20 
4 

11 
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Odor Sources and Emission Rates From Swine Operations 

Malodors from swine operations can be the result of a single odor source, a single 

odor event, or the combination of several sources and events. Therefore, it is important 

to conduct a thorough inventory of all odor sources on a site. There are three main 

sources of odor: the animal housing unit, the manure storage unit and the land application 

of manure. However, many other sources (e.g., the composting of dead animals) can 

contribute to odors. 

Each source does not generate the same nuisance odors. Research has shown that 

some sources release more odor per second than others. Both the size of the source and 

its emission rate should be considered when assessing odors. Odor emission rate is 

quantified by the amount of odor (OU/m3
) released in a unit air volume per second 

(OU/s). In North America, the odor concentration is often expressed in OU, which 

results in a unit of OU.m3/s for odor emission rate. For easy comparison between 

sources, the emission rate is also often described in terms of odor emission rate per unit 

floor area (OU.m3/s/m2
) or per animal unit (OU.m3/s/AU). Measurement of the odor 

emission rate poses major problems, mainly because it can vary both temporally and 

spatially. Several analytical methods have been described by Smith and Watts (1994). 

They consist of sampling actual point emissions using a wind tunnel or hood. Despite 

their reliability and ease of use, the direct methods are expensive. Alternatively, indirect 

techniques using empirically or physically based models are available. In the present 

study, the emission rate is calculated using an indirect method based on a Gaussian 

dispersion model known as STINKBAK. (Smith, 1993). 



Housing Unit 

CAFOs were originally developed and introduced in the United States in the 

1950s for poultry production. Since then, modifications have improved labor and 

production efficiencies. Today, animals are housed year round in barns in order to 

protect them from cold winters and diseases. Animals often spend their entire lives 

indoors in these facilities. Hogs mature quickly. Approximately 24 weeks are required 

to raise a pig from birth to an acceptable slaughter weight. On a farm, pigs are grouped 

13 

in lots that are uniform in size, sex and general health. The phases of pork production are 

called breeding/gestation, farrowing, nursery, and growing/finishing {Table 4). 

The odor emission rate varies widely among the different facilities and within the 

same type of facility. Gestation and finishing facilities release less odor on average than 

farrowing and nursery facilities. Reported odor emission rates range from 3 to 20 

OU.m3/s/m2 for gestation confinements, from 4.80 to 12 OU.m3/s/m2 for farrowing, from 

7 to 50 OU.m3/s/m2 for nurseries, and from 3 to 21 OU.m3/s/m2 for finishing facilities 

(Zhang et al., 2002). 

Table 4 
Pork production phases (EPA, 2004) 

Type of barn Time spent in the Animal weight 
barn (weeks) (kg) 

Breeding/gestation 15 
Farrowing 4 
Nursery 4 
Growing/finishing 16 

1-10 
10-25 
25-150 

Phase description 

Reproduction to pregnancy 
Birth to weaning 
Weaning to finishing 
Nursery to market 
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The present study focuses on the finishing facility, the last step in swine 

production. Table 5 indicates a range of estimated odor emission rates from various 

studies. The emission rate was found to be variable. The differences can be explained by 

the fact that barns are built in a variety of styles. They can differ especially because of 

their ventilation system and their floor design. Figs. 3 and 4 present schematic drawings 

of typical hog confinements. In the following sections, descriptions of the different parts 

of the buildings are given. 

Ventilation. Ventilation and fresh air supply are very important concerns when 

any type of livestock is intensively managed. A good ventilation system must provide 

fresh air to meet respiration needs of the animals, control the moisture build-up within the 

structure, move enough air to dilute any airborne disease organisms produced within the 

housing unit, and control and/or moderate temperature extremes. The major carriers of 

odors are gases from manure, dust, and water vapor. 

Table 5 
Odor emission rate from swine finishing confinements 

Manure collection Ventilation Odor emission Reference 

Deep pit Mechanical 13.9 OU/s/m2 (avg) Jacobson et al., 1999 
Deep pit Mechanical 3-15 OU.m3/s/m2 Zhu et al., 2000a 
Deep pit Natural ( curtain) 2.5 OU/s/m2 (avg) Jacobson et al., 1999 
Deep pit Natural(curtain) 2.1-33.9 OU.m3/s/m2 Biosystems, 1999 
Deep pit Natural 3-11 OU.m3/s/m2 Zhu et al, 2000a 
Shallow pit Mechanical 11-21 OU.m3/s/m2 Zhang et al., 2000 
Pull plug Natural 1.3-45.5 OU/s/AU Smith et al., 1999 
Deep litter Natural 7-42 OU/s/m2 Payne, 1997 
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Attic 

Fig. 3. Airflow pattern in a mechanically ventilated confinement. 

Attic 

Wind 

Fig. 4. Airflow pattern in a curtain-sided confinement. 
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Both mechanical and natural ventilation can be used in CAFOs. Mechanical 

ventilation relies on the presence of sidewall fans. The fans and inlets must be designed 

to provide at least three stages of ventilation: a minimum, continuous ventilation rate for 

winter, an intermediate rate for temperature control during fall and spring, and a 

maximum rate to control the temperature rise of the building in summer. Energy and 

maintenance costs make mechanical ventilation expensive. 

Natural ventilation uses local wind and thermal buoyancy to move air through the 

structure. The quantity of airflow, in this case, is not determined by the size and 

ventilation rate of fans, but by the size and placement of openings and the wind speed. In 

spite of its reduced operating costs, natural ventilation does not control temperature 

during cold weather. Thermostatically controlled sidewall curtains are used in some 

swine buildings to control inside temperature to some extent. The adjustable plastic 

curtains can be open or shut as desired, according to the outdoor temperature. 

Floor design. Within the barn, animals are grouped in pens with slatted or solid 

concrete floors. The design of the floor can have a large impact on odor production. 

Solid concrete floors with scrapers or small flush gutters tend to increase the generation 

of odors. Limiting the exposure between the building airspace and accumulated manure 

results in reduced odor. Thus, most of the new swine facilities use slatted floors. Slatted 

floors are made of non-abrasive, non-porous, slip resistant materials. They permit 

manure and water to drain into a large temporary or permanent underground storage pit, 

which also keeps the animals clean. Manure is then moved from the deep underfloor pits 

to outdoor lagoons via manual or mechanical scrapers, gravity-flow gutters, or flushing 
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gutters. Underfloor pits with longer storage capacity are becoming more common, since 

they tend to reduce odor in comparison to the shallow pit-earthen lagoon system. 

Pit ventilation is as important as the ventilation of the animal area. It helps 

prevent manure gases from seeping back up by the animals, reduces odor levels, permits 

more uniform air distribution, and helps warm and dry the floor. This results in a cleaner 

and healthier environment inside the building. 

Swine Manure Storage Units 

Swine manure can be handled as a solid, semi-solid or liquid. Liquid handling is 

more common in modem hog production because it requires less time and labor to 

collect, transfer, and store. Animal manure is usually stored either in an earthen basin or 

in an outdoor tank. Lagoons are a man-made earth-walled structure designed and 

managed to encourage microbial decomposition of the manure by adding large quantities 

of water to dilute the waste. They have been used for many years because of their 

,simplicity in operation and maintenance, and relative low cost compared to other 

treatment methods. Lagoons can be either aerobic ( containing dissolved oxygen) or 

anaerobic. Agricultural operations almost always use anaerobic lagoons because they are 

smaller, cost less, and require less management. Aerobic lagoons or oxidation ditches are 

very effective at reducing odors, but are expensive to maintain. Heber (1998a) showed 

that an aerated lagoon emitted 82% less odor than similar unaerated lagoon. Lagoon 

systems essentially dispose of nutrients to the air and the lagoon floor. About 70% of the 

nitrogen from the waste is volatilized, while phosphorus settles out. Unless the lagoon is 

vigorously agitated, the phosphorus stays on the bottom as sludge (Koelsch and Shapiro, 
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1997). Producers who do not have adequate land for nutrient application often use 

lagoons for long-term storage. Below-ground and above-ground tanks are concrete and 

steel structures that pose minimal threat of water pollution compared to earthen basins. 

Covers can also be installed on outside storage facilities for both safety and odor control 

(Hornig et al., 1999). 

Currently in the upper Midwest and especially in Iowa, earthen basins are the 

most common type of manure storage systems because they are less expensive to 

construct (personal conversation with farmer). Concrete and steel storage facilities cost 

about ten times more per unit of volume than earthen storage structures. Odor emission 

from earthen manure storage is generally seasonal with very little emission in the winter 

and more in the spring, summer, and fall. Table 6 summarizes results from several 

studies conducted in the United States. 

Table 6 
,Odor emission rate from manure storage systems 

Site description Storage type Odor emission Reference 

Nursery and finishing Earthen basins 3.8-17.6 OU/s/m2 Jacobson et al., 1999 
Farrow to finishing Earthen basins 4.4-6.8 OU/s/m2 Jacobson et al., 1999 
Gestation to nursery Earthen basins 2.2-3.1 OU/s/m2 Jacobson et al., 1999 
Nursery Above ground tank 0.1 OU/s/m2 Jacobson et al., 1999 
Finishing Above ground tank 19.4 OU/s/m2 Jacobson et al., 1999 
Gestation and farrowingBelow ground tank 12.8 OU/s/m2 Jacobson et al., 1999 
Gestation to nursery Below ground tank 51.3 OU/s/m2 Jacobson et al., 1999 
Nursery Earthen basins 12.7-21.7 OU.m3/s/m2 Biosystems, 1999 
Nursery Earthen basins 82.2 OU.m3/s/m2 Biosystems, 1999 
Gestation and finishing Earthen basins 20.3 OU.m3/s/m2 Biosystems, 1999 
Breed to wean Anaerobic lagoon 4.6 OU/s/m2 Heber et al., 2000 
Farrow to finishing Anaerobic lagoon 2.6 OU/s/m2 Heber et al., 2000 
Finishing Aerobic lagoon 1.5-2.1 OU/s/m2 Heber, 1998a 
Finishing Anaerobic lagoon 3.3 OU/s/m2 Heber, 1998a 
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Land Application 

Animal manure can be an economical source of nutrients that can help build and 

enhance soil productivity. Manure can also improve soil tilth, increase water-holding 

capacity, lessen wind and water erosion, improve aeration, and promote beneficial 

organisms. Thus, swine manure has been spread on agricultural land for many years. 

However, even if it does not last for more than a few days and happens only once or 

twice a year (usually during the spring or fall), the odors emitted during land application 

can be objectionable. Unpleasant odor from land application of manure may be the 

greatest concern the public has with livestock production. There are many ways to limit 

the impact of odor on neighbors, especially by applying manure in the morning with 

appropriate consideration of the wind speed and direction. Moreover, working manure 

into the soil or injecting it below the surface limits the amount of odor produced (Chen 

and Ren, 2002) . 

. Summary 

Confinement equipment and buildings vary from farm to farm for financial and 

other reasons. Iowa farms may have several buildings and a manure storage system, 

making it difficult to estimate the odor emission from a specific source. However, hog 

confinements are the major source of downwind odor throughout the year. Land 

application of manure can also be significant but it does not cause long-term downwind 

odor problems (Jacobson et al., 1999; Zhu and Li, 2000). 
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Odor and Citizens 

In spite of the unpleasant smell, malodors do not usually present health hazards 

for citizens who live near small swine operations because odors are usually present in low 

concentrations (Bundy et al., 1995). However, community-based studies indicate health 

and quality of life issues are of great concern to persons residing close to large swine 

operations. Wing and Wolf (2000) noted that North Carolina residents who lived in the 

vicinity of a 6000-hog confinement reported increased occurrence of headache, eye 

irritation, sore throat, excessive coughing, and diarrhea. Thu et al. (1997) also reported 

that neighbors of a 4000-sow confinement in Iowa experienced more respiratory 

ailments. In addition, Schiffman et al. (1995) found more negative emotional states 

(tension, anger, depression, fatigue and confusion) among citizens living in proximity to 

swine operations. The authors suggested that a variety of psychological and 

physiological factors may have played a role in the altered mood of residents exposed to 

odors. These factors include the offensiveness of the odor, the intermittent nature of the 

stimulus, conditioned repugnance to the odor, potential neural stimulation of immune 

responses, direct physical effects from certain constituents of the plume ( especially 

hydrogen sulfide), possible chemosensory disorders, and preconceived ideas associated 

with recent livestock related illness.es (e.g., bovine spongiform encephalopathy or Mad 

Cow disease, Asian bird flu). Part of the motivation for odor complaints may also be 

linked to the increased awareness of environmental concerns such as nitrate 

contamination of well water. 
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The real toxicity of odors is difficult to establish. The Environmental Protection 

Agency (EPA) does not regulate odors because the Clean Air Act does not consider them 

to be toxic. Some state and local agencies regulate odor from swine operations, but this 

is not widespread. In Iowa, odors are regulated by the Iowa Department of Natural 

Resources (IDNR) through the issuance of permits for construction, modification, or 

expansion of a feedlot. Small facilities do not need permits. Site selection, design, and 

management are evaluated carefully and public input is received before permits are 

issued. In order to protect citizens again odor nuisance, new confinements must adhere to 

setback restrictions with respect to neighboring residences, churches, schools, businesses, 

and public use areas. These distances vary with the size of the operation, land use, and 

topography (Heber, 1999). Further information can be found at the Water Quality 

Bureau section of the IDNR website (2004). We can note that current setback distances 

in Iowa are relatively short compared to other states: 225 m to 750 m versus 450 m to 750 

min North Carolina, 400 m to 1610 min Illinois and 305 m to 915 min Missouri (Heber, 

1998b). 

It is becoming more common now to use atmospheric dispersion models to 

predict where odor nuisance is likely to occur near and downwind of CAFOs for different 

meteorological scenarios. However, there is a lack of peer-reviewed research on model 

validation for odor. Evaluation and validation of a model are vital steps that need to be in 

place before regulatory guidelines are formulated and control technologies are required. 

More research needs to be conducted in this field to improve the consistency and 

accuracy of the atmospheric dispersion models. 



Dispersion Models 

Atmospheric dispersion models, which have been evolving since before the 

1930s, are mathematical tools that predict the movement of pollutants for air quality 

management. They are used for regulation and in policy making, as well as for 

applications such as assessing new source impacts. They compute ambient odor 

concentrations as a function of source configurations, emission strengths, and 

meteorological characteristics. 

Gaussian plume models are now widely used to predict the dispersion of 

pollutants, particularly from industrial and urban sources. Gas and particulates 

discharged into the atmosphere are transported by the wind. Dispersion is the 

combination of advection and turbulent diffusion, which are always present in the air. 

The plume of contaminated air downwind from an elevated source is roughly cone­

shaped with the apex toward the source (Fig. 5). Most dispersion models use the 

,relatively simple Gaussian approximation to simulate the steady-state dispersion of 

pollutants from an elevated continuous point source. That is, 

C(x,y,z,H) = E/(21t.crz.cry.u) x exp(-y2/(2cr/)) x 
[ exp(-( z-H)2 /(2crz 2) )+exp(-(z+H)2 /(2crz 2))] 

where C is the plume concentration (OU); E is the rate of emission from the source 

(OU.m3/s); cry and crzare the dispersion parameters representing the crosswind (lateral) 

and vertical spread of the plume (m); u is the average wind velocity at the emission 

height (mis); His the effective height of the plume centerline above ground level (m); 

and x, y and z are the ground level coordinates of the receptor (m) (Beychok, 1995). 
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Fig. 5. Gaussian plume distribution (adapted from Camey and Dodd, 1989). 

The Gaussian plume model is a reasonable approach for predicting odor 

concentration, assuming that odors disperse in the same way as other gases. To use a 

model to predict odor dispersion from agricultural sources, the previous equation must be 

modified since it was developed for the dispersion of pollutants from elevated 

smokestacks, whereas CAFOs are surface sources. Eq. (2) can be adapted to incorporate 

reflection or absorption of odor by the ground. A common simplification is also to 

assume that His equal to 0. This allows for the simplification ofEq. (2) to: 

C(x,y,z,H=0) = E/(n.crz.cry:u) x exp(y2/(2cr/)) x exp(z2/(2cr/)) (3) 

With odors, there is no plume rise due to the vertical momentum or lower density 

of a warm air mass as is the case for a stack plume. Finally, the dispersion coefficients cry 

and crz should be carefully assessed. Indeed, they represent the degree of "spreading" of 

pollutants horizontally and vertically during plume movement and thus, they depend on 

the nature of the source and on meteorological conditions. The next section highlights 

various data inputs required for dispersion modeling. 



Data Inputs 

Emission Source 
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Dispersion models require information about the source type ( e.g., point, area, or 

volume) and the rate at which pollutants (odor) are emitted. There are many ways to 

represent a source in the dispersion model. For instance, well-defined stacks, chimneys, 

or vents are commonly modeled as stationary point sources. However, agricultural 

sources are usually much more complex than industrial sources. It is very important to 

understand where the odor emissions occur. 

There are several common source types in dispersion modeling. The easiest way 

to model an agricultural source is probably to define it as an area source because this 

source type is used to model low level or ground level releases with no plume rise (such 

as lagoons, and earthen basins). The source is represented as a rectangular area with 

arbitrary orientation. Another approach is to model the agricultural source as a volume 

source. It is actually a prediction of an upwind virtual point source that would produce 

the initial size of the volume source plume. This approach is used for emissions from 

multiple vents, conveyor belts, as well as the wall and pit fans of an enclosed 

confinement. Indeed, the building itself cannot be modeled as an area source because the 

interior is not in direct contact with the atmosphere. Because the emission depends on 

the volumetric flow rate of each fan, it is easier to model each as a volume source. 

Further information concerning area and volume sources is contained in the Industrial 

Source Complex (ISC) User's guide (EPA, 1995b). 
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Receptors 

Receptors are defined as the location where pollutant concentrations are to be 

determined. Many dispersion models have the capability of including multiple receptor 

networks. If an overall view of pollutant concentration on and off the site is necessary, 

then a grid of receptors ( cartesian or polar) should be defined. 

Meteorological Data 

Dispersion of odorants in the atmosphere is largely dependent upon 

meteorological conditions. Emission and dispersion of pollutants occur in the boundary 

layer, defined as the part of the troposphere that is directly influenced by the presence of 

the earth's surface and responds to surface forcings with a timescale of about an hour or 

less. These forcings include frictional drag, evaporation and transpiration, and heat 

transfer. Wind speed and direction, atmospheric stability, and mixing height are major 

variables in the boundary layer. The quality of model predictions depends mostly on the 

accuracy of meteorological and emission data. 

Wind. Horizontal winds play a significant role in the transport and dilution of 

odors. Careful specification of wind speed and direction is important since the Gaussian 

equation assumes the wind is constant for a given time period. When the wind is calm, 

the Gaussian approximation cannot be applied because it would compute an infinite odor 

concentration at the source. However, in the real world, dispersion would still occur 

through molecular diffusion. Odor dispersion is also significantly affected by variability 

in wind direction. If wind direction is constant over time, the same area will be 



continuously exposed to nuisance odors. However, if the wind is shifting regularly, the 

exposed area will be large and Gaussian plume theory is not appropriate. 
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Wind speed is greatly affected by friction, which is proportional to surface 

roughness. Surface features such as lakes, cultivated fields, or buildings determine the 

roughness of the terrain, which is measured by the surface roughness length. This 

parameter is the height at which the mean horizontal wind speed is zero. The greater the 

parameter, the greater the reduction in wind speed. Use of the appropriate roughness 

length is essential to the study of odor dispersion from ground level sources (Panofsky 

and Townsend, 1964). EPA surface roughness lengths for a variety of surface types are 

summarized in Table 7. 

Table 7 
Surface roughness lengths for various land uses (EPA, 1995a; EPA, 1998a) 

Terrain description 

Smooth desert 
.Grass (4 cm) 
Grass (5-6 cm) 
Alfalfa (15.2 cm) 
Grass (60-70 cm) 
Cultivated land in spring 
Cultivated land in summer 
Cultivated land in autumn 
Cultivated land in winter 
Wheat (60 cm) 
Com (220 cm) 
Citrus Orchard 
Fir forest 
City land use 

Apartment residential 
Central business district 
Office 
Park 
Single family residential 

Surface roughness length ( cm) 

0.03 
0.14 
0.75 
2.72 

11.40 
3.00 

20.00 
5.00 
1.00 

22.00 
74.00 

198.00 
283.00 

370.00 
321.00 
175.00 
127.00 
108.00 
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Atmospheric stability. Turbulence throughout the boundary layer has a major 

effect on the rise and dispersion of air pollutants. Thus the dispersion parameters cry and 

crz in Eq. (3) are a function of atmospheric stability. Atmospheric stability determines the 

extent to which vertical mixing occurs, and consequently, the degree to which airbone 

pollutants are mixed. The ambient atmosphere is unstable if the buoyancy forces enhance 

the vertical motion of an air parcel, resulting in a peak ground-level odor concentration 

near an elevated emission source and low concentrations far from the source. The 

atmosphere is stable if the buoyancy forces resist the vertical motion. In this case, there 

is a low ground-level concentration near an elevated source, with comparatively higher 

concentrations at long distances from the source. Finally, the ambient atmosphere is said 

to be neutral if the buoyancy force does not resist or enhance vertical motion. 

The degree of stability can be categorized into defined increments or "stability 

classes." The most commonly used categories are the six Pasquill-Gifford stability 

classes: A, B, C, D, E, and F (Pasquill, 1961). The Pasquill classification system is 

presented in Table 8. Class A denotes the most unstable or most turbulent conditions and 

Class F denotes the most stable or least turbulent conditions. In this system, wind speed 

measured at 10 m above ground level, and day time incoming solar radiation or the night 

time percentage of cloud cover are used to determine the stability class. 

The dispersion parameters cry and crz in the Gaussian model are calculated using 

algorithms based on field studies. Table 9 summarizes some of the empirical equations 

that have been used to estimate the dispersion coefficients. These parameter values are 

most applicable for releases near the ground. 
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Table 8 
Key to the Pasquill-Gifford stability categories (adapted from Pasquill, 1974) 

Surface wind speed at Day incoming solar radiation Night-time cloud cover 
10 m (mis) 

Strong Moderate Slight >50% <50% 

<2 A A-B B E F 
2-3 A-B B C E F 
3-5 B B-C C D E 
5-6 C C-D D D D 
>6 C D D D D 

Table 9 
Examples of empirical models that have been used to calculate the dispersion parameters 

Type source cry 

Industrial source e kl+ k2lnx+ k3 (lnx)(lnx) 

Industrial source k1x/[l + (x/k2)] k3 

Rural area 
k1x(l + O.OOO1x)"0•5 

102< X < 104 

Urban area 
k1x(l + O.OOO4x)"0•5 

102<x< 104 

Agricultural source O.84678xtan(k1+ k2lnx) 

Industrial source kixo.903 

O"z 

e k4+ k5lnx+ k6 (lnx)(lnx) 

~x/[1 + (x/k2)] kS 

k2x(l + k3x)"0•5 
k
4 

k2x(l + k3x)"0•5 

k3Xk4 

k2xk3 

Reference 

McMullen, 1975 

Green et al., 1980 

Briggs cited by 
Gifford, 197 6 

Briggs cited by 
Gifford, 197 6 

Smith, 1993 

Koch cited by 
Chen et al., 1998 

Agricultural source k1x u -k2e-k3x ~x u -kse-k6x Chen et al., 1998 

Note: u is the average wind speed in mis; xis downwind distance in meters; the 
coefficients k1-k6 are fitted coefficients. 

The mixing layer height. The mixing layer height (also known as the mixing 

depth) is the thickness of the layer above the earth's surface that experiences vigorous 

mixing by convection and turbulence. Dispersion of pollutants is generally restricted to 
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the mixing layer because of strong stability above the mixing layer height. The greater 

the mixing depth is, the more effective is dispersion at reducing pollutant concentration. 

Mixed layer depth is very important to pollutant concentration far from the emission 

source. For receptors closer to the source, the influence of the mixing layer height can be 

ignored without too much loss of accuracy. A few empirical parameters can be used as 

inputs in computer models to describe the mixing depth as well as its evolution in time. 

The Monin-Obukhov length is one of these parameters. It is related to the depth of the 

near-surface layer in which vertical wind shear is large enough to create turbulent mixing 

even under stable conditions. 

Topography. The depth of the mixing layer is influenced on a local scale by 

surface characteristics such as roughness, reflectivity, and availability of moisture. These 

influences are quantified through the surface roughness length, albedo and Bowen ratio 

respectively. The albedo is the ratio of the amount of solar radiation reflected by the 

surface to the amount incident upon it. It varies from 0.95 over fresh snow to 0.05 over 

dark wet soils. The Bowen ratio is the ratio of sensible to latent heat fluxes from the 

earth's surface into the air. It is smaller over moist surfaces where most energy goes into 

evaporation and higher over dry surfaces where most of the energy goes into sensible 

heating. Typical values range from 6.0 over arid regions to 0.1 over the ocean. Albedo 

and Bowen ratio usually vary with time and weather as indicated in Tables 10 and 11. 

Model Selection 

Several Gaussian plume models are commercially available. The ones that have 

been evaluated for their effectiveness in modeling emissions from feedlot facilities 
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include the Australian regulatory model AUSPLUME (Smith, 1995b ); the sanctioned 

American regulatory models ISC3 (EPA, 1995b), CALPUFF (Scire et al., 2000), 

INPUFF-2 (Zhu et al., 2000b), and PTDIS (Janni, 1982); and the AMS/EPA Regulatory 

Model AERMOD (EPA, 1998b ). A dispersion model, known as STINK.BAK, was 

Table 10 
Albedo of ground covers by land-use and season (EPA, 1998a) 

Land-use Spring Summer Autumn Winter 

Water ( fresh and sea) 0.12 0.10 0.14 0.20 
Deciduous forest 0.12 0.12 0.12 0.50 
Coniferous forest 0.12 0.12 0.12 0.35 
Swamp 0.12 0.14 0.16 0.30 
Cultivated land 0.14 0.20 0.18 0.60 
Grassland 0.18 0.18 0.20 0.60 
Urban 0.14 0.16 0.18 0.35 
Desert shrubland 0.30 0.28 0.28 0.45 

Table 11 
Daytime Bowen ratio by land-use and season with average moisture conditions (EPA, 
1998a) 

Land-use Spring Summer Autumn Winter 

Water ( fresh and sea) 0.1 0.1 0.1 1.5 
Deciduous forest 0.7 0.3 1.0 1.5 
Coniferous forest 0.7 0.3 0.8 1.5 
Swamp 0.1 0.1 0.1 1.5 
Cultivated land 0.3 0.5 0.7 1.5 
Grassland 0.4 0.8 1.0 1.5 
Urban 1.0 2.0 2.0 1.5 
Desert shrubland 3.0 4.0 6.0 6.0 



designed specifically for agricultural odors (Smith, 1993). The choice of model for a 

particular application depends on many factors such as the source, the atmospheric 

conditions, the scale of dispersion studied, and the type of output desired ( emission rate 
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or concentrations). Regulatory models are designed to determine compliance with air 

quality standards. ISC3 is often selected because of its ease of use and because 

comparisons between available models show that it is the most suitable model to use for a 

detailed analysis (Curran et al., 2002; Koppolu et al., 2002; Sheridan et al., 2004). 

However, the accuracy of traditional steady-state dispersion models, such as ISC3 and 

AUSPLUME, has been seriously questioned (Ormerod, 2001). Gaussian puff models 

that are in fact non-steady Gaussian plume models, like CALPUFF or INPUFF-2, 

recognize the fact that odor emission occurs intermittently and not in a steady continuous 

stream for any length oftime (Zhu et al., 2000a). Currently another model, AERMOD, 

has been developed to replace the 30-year-old ISC3. It has been shown that in simple 

terrain (without obstructions) AERMOD forecasts are more accurate than ISC3. In a 

study conducted by Hanna et al. (2001) on the emissions from five industrial sites and 

considering only the highest predicted and observed concentrations, AERMOD was 

found to underpredict by about 20%, on average, while ISC3 overpredicts by a factor of 

seven, on average. 

Because of previous validation studies, AERMOD was selected as the most 

suitable model to use in this study in order to predict odor dispersion. Moreover, 

STINBAK was also chosen because it calculates the odor emission rate, a required input 

for AERMOD. 
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STINKBAK 

Dr. Rod Smith from the University of Southern Queensland, Australia, created the 

Gaussian plume model, STINKBAK (Smith, 1993; Smith, 1995a) for his own research 

purposes. The program, written in FORTRAN, was designed to predict the odor 

emission rate from area sources of finite size and any orientation with respect to the wind 

direction. The basis for the computer model lies on the numerical integration of Eq. (3) 

over the source area. The program STINKBAK first calculates a non-dimensional 

concentration x(x,y,z) at a specified point downwind of a rectangular source, given the 

dimensions of the source (X,Y), the location of the receptor from the center of the source 

(x,y), and the wind speed and direction (angle 0 to the x axis) (Fig. 6). Surface 

roughness length, atmospheric stability class, and the Monin-Obukhov length are the only 

meteorological data required to run the model. The non-dimensional concentration is 

determined by solving the numerical integration of Eq. (3): 

x(x,y,z) = L{l/(21tcrzi) x exp(-z2/2cri) x 
[erf((y+0.5Y)/(2°.scryi))- erf((y-0.5Y)/2°·5cryi))] 8X} 

(4) 

where O'yi and O'zi are the dispersion coefficients for each strip. The non-dimensional 

concentration x at the receptor is related to the actual concentration C and to the emission 

rate by: 

C(x,y,z) = x(x,y,z) X Ea/ u 

where Ea is the spatial average emission rate per unit area from the area source 

(OU.m3/s/m2
). Thus, the odor emission rate can be calculated from Eqs. (4) and (5). 

(5) 



33 

X 

~<---X----+ 
• Receptor: C(x,y,z) 

Fig. 6. Coordinate definition for a rectangular area source (adapted from Smith, 1995a). 

Currently, STINKBAK is one of the only programs that was specifically written 

to study the dispersion of malodors from agricultural sources. However, only a few 

studies were carried out to evaluate the accuracy and consistency of the predicted 

emission rates. Moreover, the model cannot handle multiple area sources. This can be 

problematic if the study site is surrounded by other CAFOs. 

AERMOD 

The American Meteorology Society (AMS) in collaboration with the EPA 

developed AERMOD for regulatory purposes. The EPA (2000) proposes to include the 

model in the Guideline on Air Quality Models and the model has been released for public 

review and comment. The model is capable of handling multiple sources, including 

point, line, area, and volume sources. Surface and upper air observations from the closest 

observing sites are used to specify meteorological conditions. In addition, the user has to 

specify the albedo, the Bowen ratio, and the surface roughness length. 

The basic types of output available with AERMOD are summaries of high values 

(highest, second highest, etc) at receptors for each averaging period. Model output can 

be imported into many graphics packages to produce contoured plots (EPA, 1998b ). 



CHAPTER3 

MATERIALS AND METHODS 

Field Methods 
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Field measurements took place on 13 consecutive weeks during July/September 

2003 at two different finishing hog confinements located about 10 to 20 km south of 

Cedar Falls, Iowa. Data were collected in the morning only, except for three days in 

September measurements were made also in the evening. The facility in Fig. 7 (hereafter 

referred to as Confinement A) is mechanically ventilated with wall and pit fans. An open 

gestation and breeding lot, farrowing house, nursery house, and earthen basin with 

manure are located approximately 100 m to the west of confinement A. Two steel bins 

lie directly to the west of the confinement. The surrounding field of grass is flat and 

covers an area of 5,000 m2
. The grass was mown to a height of 3 cm during the 

experiments. Farther out, cornfields replace the grass. The com varied in height from 1 

m to 2 m during the sampling. A schematic drawing and complementary information on 

the site (hereafter referred to as Site A) is given in Appendix A. The facility in Fig. 8 

(hereafter referred to as Confinement B) is naturally ventilated through its open curtains 

during the summer and mechanically ventilated via its pit fans during the winter. The 

confinement is located in relatively smooth, homogeneous terrain consisting of soybeans 

that reached 60 cm high by the end of the growing season. The closest neighboring hog 

confinements are several hundred meters away. A schematic drawing and 

complementary information on the site (hereafter referred to as Site B) is given in 

Appendix A. Further information obtained from the owners is presented in Table 12. 
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Fig. 7. Mechanically ventilated confinement. Note the presence of six sidewall fans and 
four pit fans . 

Fig. 8. Curtain-sided confinement. 
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Table 12 
Basic information for the confinements 

Description Confinement A Confinement B 

Date of construction 1977 1990 ( estimated) 

Dimension 
Length (m) 43.9 73.2 
Width (m) 12.3 12.5 
Height (m) 3.0 3.0 
Surface area (m2) 537.7 915.0 
Volume (m3) 1621.5 2745.0 

Capacity 500 hogs 1200 hogs 

Ventilation System Mechanical Natural 
Number of pit fans 8 8 
Number of wall fans 14 
Max volumetric flow rate (m3/s) 

Pit fan 1.27 Unknown 
Wall fans 2.02-1.65 

Curtain area (m2) 73.2 

Manure collection 
Floor type (material) Slatted Slatted 
Pit capacity 42.6x12.2xl.8 m deep Unknown 
Pit washing frequency Twice a year Unknown 

Geography 
Land use around confinement Grass and com fields Flat soybean fields 
Closest obstruction (size) 2 circular steel bins Warehouse 

( 10 m in diameterx (40.0x10.0x3.0 m) 
5 m high) 

Closest odor source (distance) gestation/breeding, finishing barn (600 m) 
farrowing and nursery 
barns, and earthen basin 
(100 m) 

Facility proximity to neighbors 800 150 
(m) 
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Work at Facility A was completed before work began at Bat the request of one 

owner in order to minimize the risk of contamination. Sampling at Confinement A 

occurred on 1 July to 5 August 2003 on days when the wind was not coming from the 

other odor sources of the farm. Sampling at Confinement B occurred from 20 August to 

30 September 2003. 

Measuring Methods 

The concentration of the odor was estimated in the field at various distances 

downwind from the hog confinement by a panel of volunteers using a Nasal Ranger® 

Field Olfactometer (St. Croix Sensory Incorporation, P.O. Box 313, Lake Elmo, 

Minnesota 55042, USA). This instrument (Fig. 9) is designed with dilution ratios of 2, 4, 

7, 15, 30 and 60 parts of filtered air to one part of ambient air. Its selection results from 

the fact that it is currently one of the most reliable, easy to use, and cost effective means 

to quantify odor strength (McGinley and McGinley, 2003; Nosing around, 2003). To 

use, a panelist firmly places his nose inside the nasal mask and inhales at a constant rate. 

The correct inhalation rate is indicated via a set of recessed LED lights on the Nasal 

Ranger. At the beginning of each measurement, a panelist starts with the highest dilution 

ratio, i.e. 60, and decides if he detects the presence of an odor. If an odor is observed 

after inhaling two or three times, a concentration of 60 OU is recorded. Otherwise, the 

panelist decreases the dilution ratio until an odor is detected. If no odor is detected with a 

dilution ratio of 2, the concentration is below 2 OU. The locations of the measurements 

relative to the confinement were determined using a hand-held Global Positioning 

System (GPS) receiver (Trimble GeoExplorer®, 645 North Mary Avenue, P.O. Box 3642, 
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Fig. 9. The Nasal Ranger® Field Olfactometer (St. Croix Sensory, 2003). 
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Sunnyvale, California 94088, USA). Wind speed at 10 m was obtained from the 

Waterloo municipal airport (WBAN ID: 94910) and the amount of cloud cover was 

observed directly at the time of sampling. The stability class was determined using Table 

8. Other variables required in order to run the computer models (wind speed and 

direction, outdoor temperature, and relative humidity) were collected with a hand-held 

Kestrel® 4000 anemometer (Nielsen-Kellerman, 104 West 10th street, Chester, 

Pennsylvania 19013, USA), which is the same instrument used by firefighters in the 2003 

California wildfires (Gizmo, 2003). 

All panelists (four male and five female) were either students or staff at the 

University of Northern Iowa (UNI) and ranged in age from 21 to 49 years. The character 

sketches of each panelist are presented in Appendix B. Panelists were not provided any 

monetary compensation for their participation. They were also asked to refrain from 

smoking at least 30 min before testing. Panelists first underwent an introductory session 

on use of the olfactometer. Five panelists (hereafter Pl, P2, P3, P4 and P5) measured the 

odor concentration downwind from Confinement A. When sampling at Confinement B, 

only PI came back. He was accompanied by a new panel of four (hereafter P6, P7, P8 

and P9). 

Panelists took turns recording the odor concentration. All used the same 

olfactometer but each used his or her own nasal mask. The measurements always started 

at the greatest distance from the source where no odor was observed. Measurements 

progressed closer to the confinement along an irregular (zigzag) track (Van Langenhove 

and Van Broeck, 2001). Ten to 20 sampling locations were recorded every sampling day. 



Panelists were required to wear a carbon filter mask between each measurement and to 

limit their time on the farm to two hours per day in order to minimize odor 

desensitization. 

Computer Analysis 

Emission Calculation with STINK.BAK 
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Emission rates were obtained by specifying the source length and width, the 

location of the measurement site relative to the confinement, the mean wind direction and 

speed, the Pasquill stability class over an averaging time of 1 hour, the surface roughness 

length, and the Monin-Obukhov stability length. The selection of a roughness length for 

Site A was complicated by non-homogeneous terrain. Different values were finally 

adopted depending on the location of the measurement and ranged from 0.01 mover 

grass to 0.74 mover the 2 m high com. The roughness length for Site B was estimated to 

be 0.22 m. The Monin-Obukhov length was then determined using its relationship to 

Pasquill stability class and roughness length as given by Golder (1972). The values 

adopted for both sites are shown in the second row of Table 13 and used the roughness 

length for cultivated land. They were the same as the ones adopted by Smith (1995a). 

For each measured odor concentration, an emission rate was calculated (OU.m3/s/m2
). 

Table 13 
Values of Monin-Obukhov length used as inputs for STINK.BAK 

Pasquill Stability Class A B C D E F 

Adopted Monin-Obukhov length -5 -40 -200 00 100 5 
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Forecasting Odor Plume with AERMOD 

Concentrations from AERMOD were calculated using its rural dispersion mode. 

A 30 m cartesian grid based on a 1 m resolution aerial photograph centered on the 

confinement was defined. The terrain and the nearby steel bins were taken into account. 

Digitized topographic information (30 m resolution elevation) was obtained from the 

United States Geological Survey (USGS). The surface parameters (surface roughness 

length, albedo, and Bowen ratio) were determined using the values for cultivated land 

given in Tables 6, 9 and 10. Confinement A was described by multiple volume sources, 

each representing a pit or wall fan. The odor emission rate was modified from that 

provided by STINKBAK according to Eq. (6), which transforms the emission rate from 

an area source to that of a volume source: 

EAERMOD = (EsTINKBAKxAxQ) I (nxV) (6) 

where EAERMoo is the odor emission rate of each individual fan, expressed in OU.m3 /s; 

EsTINKBAK is the odor emission rate calculated by the program STINKBAK; A and V are 

the surface area and volume of the confinement (537.7 m2 and 1621.5 m3); n is the 

number of fans (22); and Q is the mean volumetric flow rate of each fan ( 1.41 m3 /s ). 

This last value corresponds to an average of the maximum flow rates of the wall and pit 

fans. We assumed that during the summer the fans ran at their highest setting. 

Confinement B was defined as an area source when its curtains were open. No sampling 

occurred when curtains were closed. 

Total clouds, pressure, temperature, dew point temperature, wind speed and 

direction, were generated by the Workstation Eta model. The BUFKIT and BUFGET 
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programs were used to estimate the cloud ceiling height. The model was run with hourly 

input of meteorological data. 

After running the meteorological preprocessor AERMET on the initial conditions, 

a 1-hour maximum odor concentration forecast was generated by the BREEZE 

AERMOD version 4.0.9 graphical interface (Trinity Consultants, 12801 North Central 

Expressway, Ste. 1200, Dallas, Texas 75243, USA). The program was run for every 

sampling day. 



CHAPTER4 

RESULTS AND DISCUSSION 

Odor Emission Rate Calculations 
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For each sampling location, the emission rate was calculated for each of the 

panelists using the computer program STINKBAK. A simple analysis of the data was 

performed using the statistical program SPSS 11.0 for windows (SPSS Inc. Headquarters, 

233 South Wacker Drive, Chicago, Illinois 60606, USA) in order to get the means and 

standard deviations for each observer. The data were found to have a normal distribution. 

Many outliers were isolated and then deleted from the data population. Indeed, 

STINKBAK is a Gaussian model that is specifically design to calculate the odor emission 

rate downwind from an area source. Therefore, use of the program is inappropriate for 

locations outside of the cone shaped plume. Even if sampling locations were carefully 

selected on site, it was frequently found later that they were outside of the Gaussian 

plume. This represents a real limitation of the STINKBAK program. The final results 

are summarized in Table 14. Odor emission rates are reported as the geometric mean of 

the measured values presented in Appendix C. Confinement-average odor emission rates 

ranged from 13.1 to 39.5 OU.m3/s/m2 for Confinement A and from 15.8 to 52.5 

OU.m3/s/m2 for Confinement B. A considerable amount of variance in odor 

concentration and therefore, in emission rate was observed among samples. This was 

probably due to inherent errors in the olfactometry procedures, and temporal and spatial 

variance of odor in the building. In the following sections, the effects of sampling time, 

outdoor temperature, wind speed, relative humidity, panelist, and barn type are discussed. 
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Table 14 
Mean odor emission rate calculated by STINKBAK program. The first part of the table 
refers to Confinement A and the second part to Confinement B 

Date, Wind Temperature Relative Mean odor emission rate (OU.m3 /s/m2
) for 

2003 speed (°C) humidity 
(mis) (%) Pl P2 or P3 or P4 or PS or 

P6 P7 P8 P9 

03-Jul 2.6 29.7 66.4 35.1 35.4 26.9 * * 
05-Jul 2.6 24.5 62.7 33.5 37.4 38.0 * * 
09-Jul 0.6 18.0 81.2 17.7 23.8 13.9 * * 
10-Jul 1.4 18.3 80.2 17.6 15.2 * 20.6 16.2 
11-Jul 2.4 21.1 66.7 19.2 37.7 20.0 * * 
14-Jul 1.7 28.7 47.0 33.4 25.6 13.6 * * 
15-Jul 2.7 29.2 44.7 36.0 27.4 34.4 30.5 * 
16-Jul 1.1 25.7 58.6 34.0 * 37.7 * * 
17-Jul 1.1 27.0 68.3 34.7 32.4 20.9 * * 
21-Jul 1.5 24.1 57.8 29.4 24.2 18.9 * * 
22-Jul 2.1 20.7 58.5 26.9 30.4 * 29.4 21.3 
24-Jul 1.6 23.2 53.2 19.1 13.1 * 15.2 17.1 
25-Jul 2.6 23.8 59.3 21.9 26.1 * 26.2 22.7 
30-Jul 2.9 22.4 74.5 26.7 * 21.6 * * 
31-Jul 3.6 24.6 63.5 33.7 39.5 37.8 * * 
05-Aug 2.6 23.1 70.7 28.1 * 22.6 * * 

20-Aug 1.4 36.7 35.4 32.5 20.5 * 30.4 * 
21-Aug 2.6 29.7 46.4 35.5 29.7 * * 39.8 
22-Aug 1.6 25.3 49.8 38.9 24.0 41.7 38.5 27.0 
27-Aug 5.8 35.6 26.1 33.4 23.9 25.4 * * 
28-Aug 1.9 29.5 55.4 51.6 * 51.6 26.0 45.9 
03-Sep 3.6 31.4 36.6 52.5 29.0 46.4 * 42.0 
04-Sep 2.0 16.6 59.2 27.6 18.4 * 28.1 27.5 
09-Sep 2.0 30.0 28.7 29.7 * 29.9 29.2 * 
09-Sep 1.5 19.1 28.2 27.8 * 24.1 30.0 * 
10-Sep 3.4 30.3 35.7 32.9 20.8 26.9 15.8 * 
17-Sep 4.3 28.2 40.2 38.5 27.4 36.0 * * 
18-Sep 2.0 26.1 51.7 37.5 32.8 * 25.8 * 
18-Sep 3.3 19.8 62.8 23.9 20.6 20.2 * * 
24-Sep 1.6 20.0 22.3 26.0 16.1 28.9 * * 
24-Sep 1.7 17.0 23.9 18.5 18.2 19.9 * * 
25-Sep 2.9 9.4 50.6 24.5 22.2 * 20.6 29.3 

Note: * indicates that the panelist was not present on the sampling day. 
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Sampling Time and Meteorological Effects 

Many parameters can influence odor dispersion in the atmosphere. Wood et al. 

(2001) observed that the season (month of collection) significantly affected odor 

emission rates. To better compare facilities, the period of data collection was limited in 

order to reduce the confounding effect of seasonal change. Figs. 10 and 11 show the 

temporal evolution of the relative odor emission calculated from Pl 's measurements. 

Relative odor emission is defined as the ratio of emission rate to the average of all 

emission rates at this site based on Pl 's measurements. A ratio of 1.0 means that the 

odor level in a given sampling day was the same as the average. Statistical analysis 

indicated that emissions were significantly (p-values < level of significance a= 0.05) 

greater than 1.0 on the15 and 17 July and lower than 1.0 for periods 9-11 July and on 24 

July for Confinement A. For Confinement B, the highest emissions occurred during the 

period from 28 August-3 September. No clear pattern of odor emission was observed 

and it appears that sampling time is not the dominant factor contributing to emission 

variation. 

Odor measurements were usually taken in the morning. In addition, on three days 

in September, measurements were taken in the evening at Confinement B. It seemed that 

more odor was emitted from the facility in the late morning than evening (Fig. 12). 

Nevertheless, these differences are not statistically significant at an alpha level of 0.05. 

This result has been described in other studies, which usually observe an increase in odor 

emission from 11 :00 am until 1 :00 pm (Zhu et al., 2000a). The effect of time of day on 

odor emission rate should be studied further to validate these results. 
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Fig. 10. Relative odor emission for Confinement A from Pl 's measurements. Error bars 
indicate the standard error at a level of significance a= 0.05. 
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Fig. 11. Relative odor emission for Confinement B from Pl 's measurements. Error bars 
indicate the standard error at a level of significance a= 0.05. 
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Morning Evening 

Fig. 12. Calculated odor emission rate from Pl at different times of the day in September 
on Confinement B. Error bars indicate the standard error at a level of significance a = 
0.05. 

Linear regression analyses were performed to study the relationships between the 

odor emission rate and each of the wind speed, the outdoor temperature, and the relative 

humidity. No correlations were found for any panelist with the wind speed or the relative 

humidity (R2 correlation coefficients of 0.01 for each). Outdoor temperature appeared to 

have an effect on emission. The correlation coefficients for Confinement A and 

Confinement Bare summarized in Table 15. A polynomial (quadratic or cubic) 

regression analysis could also be applied to describe the correlation, especially for the 

naturally ventilated building because it significantly increased the correlation 

coefficients. However, the linear model was preferred because it is easier to interpret in 

statistical analysis. Moreover, unlike the polynomial models, the linear models in Table 

15 are similar between panelists suggesting that outdoor temperature had the same effect 



Table 15 
Summary of the regression analysis between the odor emission rate and the outdoor 
temperature 
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Linear model Linear Polynomial model Polyn 
R2 R2 

Confinement A 
Pl E = 1.6T - 11.3 0.71 E = -0.001T3 + 2.9T- 31.2 0.72 
P2 E=0.7T+ll.4 0.11 E = -0.1T2 + 6.6T- 57.7 0.15 
P3 E = 0.8T + 4.6 0.11 E = -0.004T3 + 7.7T- 104.6 0.26 
P4 E=0.6T+9.2 0.18 E = 0.003T3 

- 0.1 T2 + 37.8 0.25 
PS E=0.7T+5.3 0.27 E = 0.2T2 + 10.6T - 98.8 0.34 

Confinement B 
Pl E = 0.7T + 15.4 0.34 E = -0.01T3 + 0.5T2 -10.3T+82.1 0.58 
P6 E = 0.3T + 17.0 0.17 E = -0.006T3 + 0.4T2 -7.9T+66.2 0.61 
P7 E = 0.8T + 10.5 0.23 E = -0.003T3 + 5.8T- 69.9 0.53 
P8 E = 0.2T + 24.4 0.03 E = 0.005T3 

- 0.4T2 + 8.6T-32.6 0.29 
P9 E = 0.7T + 18.7 0.55 E = 0.003T3 

- 0.1 T2 + 0.7T+29.7 0.80 

Note: E = emission rate (OU.m /s/m ) 
T = outdoor temperature (°C) 

for all panelists. The mean slope values were 0.9 and 0.5 OU.m3 /s/m2/°C for 

Confinement A and Confinement B respectively. Data for Pl are presented in Figs. 13 

and 14. 

Higher emissions were noted with higher temperatures. This relationship was 

expected because higher temperatures increase the biological activity of odor-producing 

bacteria. Temperature accelerates the biodegradation of manure and urine. At 

temperatures below 5 °C the decomposition process almost comes to a stop. Very little 

odor is produced during the winter compared to the warmer summer months. Maximum 

activity occurs between 30 and 37 °C and then falls off (Zhu, 2000). The present research 

needs to be complimented by sampling during the winter. Moreover, it appeared that 



,-.... 
N 40 -_§ 

rn 
35 ----M 

s 
30 :::i 

0 25 __, 
(l) .... 

20 cs:i 
i:::: 
i::: 15 0 ·;:;:; 

10 rn 
'§ 
~ 5 
~ 
0 0 "d 

0 
15 17 19 21 23 25 27 29 

Temperature (degree C) 

Fig. 13. Mean temperature measured downwind of Confinement A and mean odor 
emission rate for P 1, from Table 14. 

,-.... 
N 60 -s 
----rn 

----M 

50 s + + 

:::i 
Q, 40 
(l) .... 
cs:i 30 i:::: 
i::: 
0 20 ·;:;:; + rn 
'§ 10 ~ 
~ 

0 0 "d 
0 

5 10 15 20 25 30 35 

Temperature ( degree C) 

Fig. 14. Mean temperature measured downwind of Confinement B and mean odor 
emission rate for Pl, from Table 14. 

49 

31 

40 



50 

outside temperature had a weaker influence on odor emission for the naturally ventilated 

building. Variable speed of the exhaust fans of the mechanically ventilated confinement 

might have contributed to this difference. Indeed, a rise in outdoor temperature was 

usually associated with an increase in ventilation rates. Fans running at maximum speed 

increase downwind concentration. For the present study, it was concluded that the odor 

emission rate was linearly dependent on the outside temperature and it should be 

calculated as a function of the temperature. 

Selection of Panelists 

Odor assessment is typically conducted by a panel of volunteers. The data 

collected by the panelists were statistically analyzed to discern dependance of 

measurements on observer while taking into account the effect of outdoor temperature. A 

formal analysis of covariance (ANCOVA) hypothesis test was performed for each 

facility. The emission rates measured by panelists were considered as the dependent 

variable. The panelists acted as the categorical variable and the temperature was the only 

covariate considered. Fitting the ANCOV A model was done with the Statistical Analysis 

System (SAS) software purchased from SAS Institute Incorporation ( 100 SAS Campus 

Drive, Cary, North Carolina 27513, USA). Table 16 contains the respective sums of 

squared error (SSE) and the degrees of freedom ( df) to be used in the subsequent 

ANCOV A hypothesis tests. 

The ANCOVA formally tests whether the observed odor emission rates are 

similar (common regression planes), have different initial values but change at the same 

rate (parallel planes), or are completely different (separate planes). Because of the three 



Table 16 
Comparison between the panelists: ANCOV A fittings (sums of squared error= SSE; 
degree of freedom = df) 

Facility Model SSE df 

Confinement A 
Separate 151546.0 577 
Parallel 152624.9 581 
Common 159973.7 585 

Confinement B Separate 176781.7 609 
Parallel 178948.1 613 
Common 196516.5 617 
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possible outcomes, a formal hypothesis test first compared common (the simplest model) 

versus parallel planes. The F-test of significance (TS), calculated using the data from 

Table 16, is used to test H0: common planes versus HA: parallel planes, and compared to 

the cut off value F ( found in the statistical table of F-values ). 

Confinement A: 

TS = [ ( S SEcommon-SSEparalleI)/ ( dfcommon-dfparalieI) ]/ (S SEparallel/ dfparalleI) = 6, 99 (7) 
Fctr -ctr 

111 
ctf 111 = 2.37 (at a significance level a= 0.05) (8) common para e ' para e 

Confinement B: 

TS= [(SSEcommon-SSEparalleI)/(dfcommon-dfparallel)]/(SSEparallel/dfparallel) = 14.79 (9) 
Fctr -ctr 111 ctr 111 =2.37(atasignificancelevela=0.05) (10) common para e ' para e 

For both facilities, TS is greater than F meaning that Ho is rejected in favor of the 

parallel planes model. The next step, therefore was to test Ho: parallel planes versus HA: 

separate planes. The F-test of significance and cut off value for this test were 

Confinement A: 

TS = [ (SSEparallel - SSEseparate)/( dfparallel - dfseparate)]/(SSEseparatef dfseparate) = 1.02 ( 11) 
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Fctf 
1 

-df 111 ctf 111 = 2.37 (at a significance level a= 0.05) separa e para e ' para e (12) 

Confinement B: 

TS= [(SSEparallel - SSEseparate)/(dfparallel - dfseparate)]/(SSEseparatefdfseparate) = 1.87 (13) 
Fctr 1 -df 111 ctr 111 =2.37(atasignificancelevela=0.05) (14) separa e para e ' para e 

At this level of significance, Ho cannot be rejected (p-value < 0.0001). Since the 

data best support a parallel planes model, we formally concluded that temperature had the 

same effect on each panelist. With higher temperature, panelists were able to detect more 

odor. This trend in odor sensation was found to be statistically the same for each 

panelist. Table 17 summarizes the equations relative to the odor emission as a function of 

outdoor temperature for each panelist. The significant differences between them are 

represented in Fig. 15 (Panel B). 

Table 17 
Parallel model equations for each panelist 

Facility 

Confinement A 

Confinement B 

Panelist 

Pl 
P2 
P3 
P4 
PS 

Pl 
P6 
P7 
P8 
P9 

Parallel model equation 

E=T+3.8 
E=T +4.2 
E =T+ 0.6 
E = T + 1.9 
E = T-2.0 

E=0.4T+22.4 
E = 0.4T + 12.6 
E = 0.4T + 20.4 
E=0.4T+ 16.3 
E = 0.4T + 24.4 

Note: E = odor emission rate (OU.m /s/m ) 
T = outdoor temperature (0 C) 
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Panel A shows the mean odor emission rates which were calculated by STINKBAK 
program after the measurements taken by each panelist. The x-axis represents the 
different sniffers who sampled the mechanically ventilated confinement ( on the left) and 
the naturally ventilated confinement (on the right). Errors bar indicate standard error at a 
significant level of 0.05. 
Panel B. ANCOV A procedure indicated that underlined measurements are not 
significantly different. 

For Confinement A, measurements by PS were found to be significantly different 

from those of P2 and Pl. For Confinement B, measurements by P6 were the lowest, 

indicating that P6's sense of smell is significantly different from that of P9, Pl and P7. 

Measurements by P9 and Pl were also significantly different from P8. PS, P6 and P8 

appear to have lower odor sensitivity, although P9 and Pl may have higher odor 

sensitivity than the other panelists. An age-related decline in odor sensitivity has been 

demonstrated by a number of studies (Griep et al., 1997; Evans et al., 1995). Looking at 
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the character sketches of the panelists presented in Appendix B, age could explain the 

lower measurements of P6. As far as PS is concerned, it appeared that he might have 

been desensitized by animal production facilities near his home. However, no particular 

reason was found for P8. She was a non-smoker and was in very good health during the 

sampling. 

In the following analysis, PS and P6 were removed because they were 

hyposensitive. P8 was also eliminated because she was considered a little bit 

hyposensitive and inconsistent in her measurements. Indeed, unlike the other panelists, 

she is the only one that does not experience higher odor concentration with higher 

outdoor temperature. The correlation coefficient of the linear model for P8 was only 0.03 

(Table 15) although it was greater than 0.17 for the others. P9 and Pl were not removed 

because there was not enough evidence of their supposed odor hypersensitivity. Finally, 

we concluded that the panelists Pl, P2, P3, P4, P7 and P9 had a "normal sense of smell" 

(i.e., that their sense of smell is representative of the human population's sense of smell) 

and only their data were used to determine an average of the odor emission rate required 

to run AERMOD. 

Odor Emission From the Confinements 

The next goal of the statistical analysis was to determine the variation in odor 

emission for each confinement. A formal analysis of covariance (ANCOV A) hypothesis 

test was performed. The emission rates measured by the subset of panelists were 

considered as the dependent variable. The type of confinement acted as the categorical 

variable and the temperature was the only covariate considered. Fitting the ANCOV A 
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model was done with SAS. Table 18 contains the respective sums of squared error (SSE) 

and the degrees of freedom ( df) to be used in the subsequent ANCOV A hypothesis tests. 

The ANCOVA formally tests whether the odor emission rates from the two 

confinements are similar (common regression planes), have different initial values but 

change at the same rate (parallel planes), or are completely different (separate planes). 

Using the data from Table 18, the test H0: common planes versus HA: parallel planes had 

F-test of significance of 42.2 and a cut off value F of 3 .84 with a p-value less than 

0.0001. Thus, Ho was rejected in favor of the parallel planes model. The hypothesis test 

H0: parallel planes versus HA: separate planes has a F-test of significance of 2.85 and a 

cut off value of3.84 (p-value < 0.0001). H0 cannot be rejected using a 0.05 significance 

level. Thus, we cannot formally reject the common lines hypothesis. Since data best 

support a parallel planes model, we formally concluded that the odor emissions are 

dependent upon temperature. The linear relationships between the outside temperature 

and the odor emission rate are plotted in Fig. 16 using the following equations from the 

ANCOV A procedure: 

Confinement A: E = 0.70T + 10.31 

Confinement B: E = 0.70T + 15.16 

Table 18 

(15) 

(16) 

Comparison between the two confinements: AN COVA fittings (sums of squared error= 
SSE; degree of freedom = df) 

SSE 
df 

Separate model 

268880.5 
898 

Parallel model 

269734.0 
899 

Common model 

282395.1 
900 
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Fig. 16. Nomograph indicating the linear relationship between the temperature and the 
odor emission rate of the mechanically ventilated confinement c-) and the curtain­
sided confinement ( - ). The dash lines extrapolate the correlation to temperatures that 
were not observed. 

The odor emission rate E and the outdoor temperature T are expressed in 

OU.m3/s/m2 and °C respectively. The equation is valid for temperatures from 10 to 35 

°C. No sampling occurred at lower or higher temperature. According to the equations, at 

a fixed temperature, the curtain-sided confinement emits significantly more odor than the 

mechanically-ventilated facility. This is not surprising because the naturally ventilated 

confinement had a higher animal density than the mechanically ventilated building ( 1.6 

animals/m2 versus 1.1 animals/m2
). Moreover, the ventilation through the large curtain 

was much more effective. The wind speed is usually faster than any pit or wall fans and 

the large curtain area enables odors to disperse easily into the atmosphere. The "natural" 

volumetric flow rate was almost three times the total volumetric flow rate of the 

mechanical confinements (115.3 m3/s versus 38.4 m3/s). The difference noted in Fig. 16 



is also probably related to the type of management, orientation and design of buildings, 

diet of the animals, and type of manure collection/storage used in the different farms. 

However, in the literature, Jacobson et al. (1999) reported that curtain-sided facilities 

often emit less odor than mechanically-ventilated buildings. Comparisons are also 

difficult because measurements were not taken on the same day at both facilities. 
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Under standard conditions (25 °C), the odor emission rate is estimated at 27.8 

OU.m3/s/m2 for Confinement A and 32.7 OU.m3/s/m2 for Confinement B. These 

numbers are within the range given by Biosystems (1999) for different swine barns, but 

about two times higher than the mean emission rates given by Jacobson et al. (1999) for a 

mechanically-ventilated barn and about 10 times higher than a curtain-sided barn. The 

difference between the odor emissions can largely be explained by the fact that Jacobson 

et al. reported annual average emission. 

Odor Plumes 

Odor plume measurements on a specific day are presented in Fig. 17 for 

Confinement A and Fig. 18 for Confinement B. The plume footprints were plotted using 

the Geographic Information System (GIS) ESRI® ArcMap™ 8.3 (380 New York Street 

Redlands, California 92373, USA). Nineteen observations on 17 July at Site A and 14 

observations on 10 September at Site B were interpolated to a 10 m grid. Geostatistical 

analyses using the Kriging method (Bolstad, 2002) were performed to produce the shaded 

contours. These days were selected because the atmospheric conditions were reasonably 
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Fig. 17. Odor concentration downwind of Confinement A at 9:00 am on 17 July 2003 . 

Fig. 18. Odor concentration downwind of Confinement B at 10:00 am on 10 September 
2003 . 



similar during the sampling periods. In both cases ambient temperatures were high 

(greater than 27 °C) with a fairly constant south wind. 
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To minimize odor fatigue, panelists were kept from making measurements close 

to the confinement where the odor would be strong. As a result, the highest odor 

concentrations may not have been observed. However, comparison of the odor plume 

patterns is still possible. The lateral and downwind spread of the plume was less at Site 

A than Site B. In Fig. 17, it is shown that odor decreased from more than 30 OU near the 

confinement to 2 OU at 70 m downwind. Odor plume measurements at Site B on 10 

September indicated that levels decreased from more than 30 OU to 2 OU in about 100 

m. Odor levels at a given distance downwind from Confinement B were always higher 

than or equal to those of Confinement A. This can be explained by the different odor 

emissions, atmospheric conditions, different group of panelists, and land use around the 

sites. Site B was fairly homogeneous compared to Site A. Buildings and nearby 

cornfields appear to limit plume dispersion at Site A. The role played by the cornfields 

surrounding the facility is dramatic. It was observed that tall cornfields significantly 

reduced odor concentration. Although the odor level was very high upwind of the com, it 

was not detectable only a few tens of meters into the com. Eddies forming as the wind 

interacts with the com and deposition of dust on the com leaves may be contributing to 

dilution of the odor and the upward movement of the plume as it interacts with the com 

would lift the odor above the panelists, preventing detection. 
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AERMOD Analysis 

AERMOD records every exceedance of a pre-defined threshold value during a 

chosen I-hour averaging period for each grid point. The threshold value used in this 

study was 1 OU. Data extracted from AERMOD includes the peak concentration at each 

grid point where exceedances were registered. Peak concentrations for times when 

sampling occurred were examined further. These concentrations were then plotted with 

ESRI® ArcMap™ 8.3. The observed plume was overlaid on the forecast for comparison. 

Typical examples are presented in Fig. 19 for Confinement A and Figs. 20 and 21 for 

Confinement B. 

Overall, the AERMOD forecasts compare favorably to the observations. 

Predicted and observed plumes have the same lateral spread and roughly the same range 

of concentrations. The concentrations are maximum near the confinement and decrease 

downwind. However, AERMOD underpredicts odor concentration near the 

confinements. Similarities between predicted and observed plumes appear to be greater 

for Confinement B. The varied land use around Confinement A is not adequately 

represented by AERMOD and modeling fans as volume sources can also be a source of 

error. The relatively uniform land use around Confinement B allows for more realistic 

modeling of the roughness length. 

For the two selected dates on Site B, the predicted plumes disperse about twice as 

far downwind as observed. The predicted plumes also cover an area about twice that of 

the observed plumes. Because the predicted concentrations are peak concentrations over 

a I-hour period, it is expected that the observed plume is smaller than predicted. The 
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Fig. 19. Predicted (contours) and observed (shaded) odor concentration (OU) at I 0:00 am 
on 21 July 2003 at Site A. 
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Fig. 20. Predicted (contours) and observed (shaded) odor concentration (OU) at 11 :00 am 
on 21 August 2003 at Site B. 
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Fig. 21 . Predicted (contours) and observed (shaded) odor concentration (OU) at 9:00 am 
on 10 September 2003 at Site B. 
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probability that panelists would record the maximum concentration for a given time 

period was very low and hence most of the observed values are smaller than predicted. 

Incomplete observations are also important in explaining this difference. Odor dispersion 

is also predicted upwind from the confinement (see Fig. 21 ). This was not observed. 

Since AERMOD's meteorological data allows for variable wind speed and direction, 

odor may disperse in several directions. 

The meteorological data are of primary importance in plume forecast accuracy. 

Figs. 22 and 23 are very good illustrations. The predicted plumes are valid at 1 :00 pm 

and 4:00 pm on 18 September. Overall, the forecast at 1 :00 pm was good. However at 

4:00 pm, the downwind axis of the forecast plume was offset about 45°. The Workstation 

Eta forecast a dramatic wind shift between 2:00 pm and 3:00 pm from 190° to 238°. In 

reality, the wind remained south. Between 2:00 pm and 3:00 pm, winds at the Waterloo 

airport varied from 170° to 190°. Looking at the surface weather conditions at 7:00 am 

on 18 September, a cold front located along western Iowa was moving toward eastern 

Iowa. The front was preceded by southerly winds. The front had not yet passed Cedar 

Falls at 4:00 pm (Fig. 24), unlike what Workstation Eta was expecting. The forecast 

wind shift had not yet occurred. 

The forecast odor plumes compared well to the observations. The meteorological 

information was found to be of primary importance in plume forecast accuracy. 
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Fig. 22 . Predicted ( contours) and observed (shaded) odor concentration at 1 :00 pm on 18 
September 2003 at Site 8. 

Fig. 23. Predicted (contours) and observed (shaded) odor concentration at 4:00 pm on 18 
September 2003 at Site 8. 
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Cedar Falls 
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LOCAL: Sep 18 04 PM 
GMT: 030918/2100 Iowa Mesonet Data 

Fig. 24. Surface observations and isobars (solid; every 1 hPa) over Iowa at 4:00 pm on 18 
September 2003. 



CHAPTERS 

CONCLUSION 

Emission rates based on odor concentrations measured with a field olfactometer 

downwind of two hog confinements were found to be well correlated with outdoor 

temperature. Temperature increases odor concentration downwind from the 

confinements. Panelists' odor perception (as well as confinements' odor emission) was 

similarly affected by temperature even when controlling for individual odor sensitivity. 

Results indicate the curtain-sided confinement had higher odor emission. At 25 °C, the 

odor emission rate was estimated at 27.8 OU.m3/s/m2 for Confinement A and 32.7 
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OU.m3 /s/m2 for Confinement B. These numbers are slightly higher than those reported in 

the literature. 

Odor levels at a given distance downwind from Confinement B were always 

higher than or equal to those of Confinement A. Odor measurements at Site A exhibited 

significant dispersion/dilution of odor concentration by the surrounding cornfields. Com 

plants appear to serve as a natural barrier that may protect citizens from odor nuisances. 

The fact that different panelists sampled on the two confinements might also have 

influenced the results. 

AERMOD odor plumes appeared to be realistic compared to observations. Shape 

and concentration ranges are similar. However, as reported by other studies, AERMOD 

underpredicts odor concentrations near the confinements. The accuracy of the 

meteorological data used by AERMOD is of primary importance in plume forecast 

accuracy. In this study, the Workstation Eta model was the source of AERMOD's 
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meteorological data. Generally, its forecasts were reasonably accurate. However, in one 

instance, the passage of a cold front and an accompanying wind shift were poorly 

forecast by the Workstation Eta. As a result, AERMOD's forecast odor plume was 

significantly different from the observed plume. 

Combining odor emission estimates from STINKBAK into AERMOD produced 

forecasts that compared well to observations. More sampling needs to be done during 

other seasons to validate the correlation between odor emission rates and outdoor 

temperature. The results are and should be confirmed by sampling more confinements 

using several field olfactometers with different D/Ts to improve the accuracy of the 

observations. 
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APPENDIX A 

DESCRIPTION OF SITES INCLUDED IN THIS STUDY 

Site A 

General Information 
Type of operation: gestation to finish 
Estimated age of operation: 25 years 
Capacity: 500 hogs 

Geography 
Topography around operation: com 
Shelterbelt or windbreak: 

Type: mature trees 
Distance from facility: 50 m to the 

north 

Facility and ventilation 

N 

1 ,--I F-ar-row--,1 w 
!Gestation I 

Number of swine buildings: 3 (farrow, nursery, and finish) 
Number of open lots: 1 (gestation/breeding) 

Finish 

Grass 

Corn 

Facility size: farrow: 25.9x7.3x3.0 m; finish: 43.9xl2.3x3.0 m; gestation: 10.0x5.0 m; 
nursery: l 8.3x 12.2x3.0 m; 

Floor type (material): farrow, nursery, and finish: slatted; gestation: cement lots 
Type of ventilation: farrow, nursery, and finish: pit and wall fans; gestation: wind 
Filtration for exhaust: none 

Manure Management 
Hog manure handled as a liquid/slurry: farrow, finish and nursery: yes; gestation: no 
Confinement collection/storage systems: 

Indoor: pit 
Outdoor: tank 

Gestation/breeding collection system: runoff from cement lots to the earthen basin 

76 

Barn washing frequency: farrow: ~20 times/year (manure hand scraper to a 4000 gallon 
pit); finish: ~2 times/year (42.6xl2.2 with 1.8 m deep pit); 
nursery: ~2 times/year (0.6 m shallow pit and 1.7 m deep pit) 
and~ 10 times/year (shallow pit) 

Earthen basin washing frequency: ~ every 20 years 
Solid manure storage: piled in a raised concrete area 
Area used for spreading manure (acres): 100 
Season applied: spring and fall 
Facility proximity to neighbors: 800 m 



General Information 
Type of operation: finish 
Estimated age of operation: 10 years 
Capacity: 1200 hogs 

Geography 
Topography around operation: soybeans 
Shelterbelt or windbreak: 

Type: warehouse 
Distance from facility: 60 m to the 

southwest 

Building and ventilation 
Number of swine buildings: 1 (finish) 
Number of open lots: 0 
Facility size: finish: 73.2x 12.5x3.0 m 
Floor type (material): slatted 
Type of ventilation: curtains and pit fans 
Filtration for exhaust: none 

Manure Management 

Site B 

Hog manure handled as a liquid/slurry: yes 
Confinement collection/storage systems: 

Indoor: pit 
Outdoor: earthen basin (not located on site) 

Barn washing frequency: ~ 10 times/year 
Solid manure storage: no 
Facility proximity to neighbors: 150 m 
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N 

r Finish 

00 
Soybeans 
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APPENDIXB 

CHARACTER SKETCHES OF THE PANELISTS 

Panelist Sex Age Smoker Height General Health Remarks 

Pl Male 23 No 1.70 m Good Smoking 
environment 

P2 Male 33 No 1.90 m Good Nothing 

P3 Female 21 No 1.70 m No measurements Nothing 
after 1 August 2003 
because of illness 

P4 Female 22 Sometimes 1.60 m Good Smoking 
environment 

PS Male 21 No 1.75 m Good Lives close to 
animal 
production units 

P6 Male 49 No 1.70 m Good Nothing 

P7 Female 21 No 1.75 m Good Nothing 

P8 Female 22 No 1.75 m Good Nothing 

P9 Female 23 Sometimes 1.80 m Good Smoking 
environment 
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APPENDIXC 

ODOR EMISSION RA TE CALCULATED USING STINKBAK MODEL 

Confinement A 

Wind speed Temperature Relative Odor emission rate (OU.m3/s/m2
) 

(mis) (°C) humidity(%) 
Pl P2 P3 P4 PS 

03-Jul 
1.2 28.1 69.3 9.7 9.0 9.7 
2.5 29.3 68.5 22.7 21.0 11.4 
2.8 28.1 68.4 26.2 24.3 45.9 
2.4 28.9 66.3 50.6 47.0 28.9 
2.9 29.0 66.4 30.6 61.1 17.5 
2.3 29.7 67.0 66.4 61.9 31.0 
2.4 30.1 65.4 29.0 27.0 29.0 
2.9 30.2 65.4 59.1 55.5 59.1 
3.4 31.1 65.9 43.6 40.9 20.4 
2.6 30.9 65.4 38.8 17.0 18.1 
2.3 29.8 65.3 24.4 25.1 24.4 
2.6 29.7 64.5 20.4 

Avg 2.6 29.7 66.4 35.1 35.4 26.9 

05-Jul 
1.2 24.5 66.7 35.5 35.6 35.5 
2.6 24.6 66.5 47.3 47.7 47.3 
2.9 24.5 65.1 13.6 14.2 13.6 
2.5 24.7 62.3 24.9 26.4 49.7 
3.5 24.2 64.0 38.8 44.2 
4.2 24.2 62.1 39.1 36.5 39.1 
3.9 24.4 60.1 49.1 45.9 49.1 
1.5 24.3 60.4 41.0 
2.1 24.5 61.0 47.8 50.9 
2.2 24.4 60.2 24.0 48.5 24.0 
2.0 24.7 60.8 29.5 27.4 29.5 

Avg 2.6 24.5 62.7 33.5 37.4 38.0 

09-Jul 
1.1 18.2 83.1 35.2 70.8 35.2 
0.5 18.1 83.2 21.1 37.5 21.1 
0.8 18.1 81.2 15.7 27.9 15.7 
1.4 18.3 81.8 10.1 10.8 10.1 
0.4 18.0 81.0 16.4 17.9 16.4 
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0.3 17.9 80.1 40.8 36.7 
0.5 17.8 80.3 5.4 2.6 2.5 
0.4 18.0 80.4 4.9 5.2 2.4 
0.4 17.7 80.1 9.5 5.1 7.8 

Avg 0.6 18.0 81.2 17.7 23.8 13.9 

10-Jul 
1.5 18.0 83.1 58.4 61.3 58.4 58.4 
1.3 18.3 82.9 8.7 8.5 18.6 18.6 
1.5 18.2 81.4 11.9 11.7 23.8 11.9 
1.9 18.5 80.8 14.9 12.9 11.9 11.9 
1.4 18.4 79.1 11.9 5.1 14.9 6.0 
1.3 18.3 79.5 22.5 11.1 22.5 22.5 
1.0 18.5 78.1 11.9 11.7 23.8 11.9 
1.5 18.3 80.0 6.5 6.9 13.0 3.0 
1.3 18.4 79.8 6.5 6.9 6.5 13.0 
1.8 18.2 80.2 13.0 6.9 6.5 6.5 
0.7 18.1 79.4 8.8 9.4 17.6 2.4 
1.8 18.2 79.5 14.7 17.6 29.4 14.7 
0.9 18.4 80.5 24.6 14.6 12.3 24.6 
1.5 18.3 78.2 24.6 14.6 24.6 12.3 
1.4 18.3 79.8 24.6 29.3 24.6 24.6 

Avg 1.4 18.3 80.2 17.6 15.2 20.6 16.2 

11-Jul 
3.4 21.3 68.5 15.9 53.8 7.9 
2.4 20.9 68.0 18.5 16.6 18.5 
1.8 21.2 66.9 19.9 38.4 19.9 
2.5 21.0 66.4 38.9 74.7 39.0 
3.1 20.8 66.1 28.7 52.3 28.7 
1.9 20.7 66.2 11.9 46.5 25.5 
1.5 21.3 66.4 5.0 10.8 5.0 
2.3 21.5 65.3 15.1 16.2 15.1 

Avg 2.4 21.1 66.7 19.2 37.7 20.0 

14-Jul 
1.8 28.5 48.9 39.3 74.9 
2.1 28.4 48.5 17.3 8.8 4.9 
0.9 28.6 48.4 66.4 29.4 15.5 
1.2 28.8 47.1 21.8 19.7 21.8 
2.4 28.8 46.1 39.4 8.4 9.2 
1.9 29.2 46.5 22.6 24.7 
1.5 29.0 45.5 7.9 17.4 7.9 
2.1 28.7 45.2 23.0 23.5 11.5 
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Avg 1.7 28.7 47.0 30.7 25.6 13.6 

15-Jul 
0.9 28.6 45.1 48.1 11.2 34.9 
2.8 28.7 44.8 32.9 33.0 32.9 44.4 
3.2 28.7 44.7 38.8 19.3 38.8 26.2 
3.1 29.1 44.6 33.0 32.8 66.0 10.4 
2.9 29.2 44.5 18.9 4.1 18.9 43.5 
2.5 29.5 44.8 32.3 32.0 32.3 27.4 
2.9 29.3 44.7 49.7 21.2 39.1 49.7 
3.5 29.6 44.5 35.3 38.6 35.3 24.5 
2.1 29.7 44.2 34.8 38.0 34.8 13.3 

Avg 2.7 29.2 44.7 36.0 27.4 34.4 30.5 

16-Jul 
1.9 25.2 60.4 16.7 8.4 
1.5 25.1 59.0 64.6 64.6 
0.9 25.4 59.2 33.5 66.9 
1.5 25.3 58.1 47.5 47.5 
0.5 25.5 58.4 38.2 17.8 
0.4 25.7 58.7 24.4 24.4 
0.9 25.6 58.6 40.4 20.2 
0.7 25.9 58.4 21.0 42.1 
1.1 26.1 58.2 7.0 26.2 
1.5 26.4 58.2 58.7 58.7 
1.6 26.1 57.9 22.4 

Avg 1.1 25.7 58.6 34.0 37.7 

17-Jul 
2.1 26.4 71.5 10.9 20.4 10.9 
2.0 26.5 71.5 20.4 35.7 9.5 
0.9 26.4 71.0 22.3 19.2 6.4 
0.4 26.7 70.5 36.7 31.7 36.7 
2.1 26.6 70.4 14.5 54.4 7.3 
0.6 26.8 70.0 30.0 14.7 30.0 
0.3 26.9 69.2 39.4 19.3 39.4 
1.5 27.1 68.0 33.1 61.1 18.9 
0.4 27.0 67.9 25.8 23.1 14.8 
1.4 27.3 67.4 74.8 67.8 34.9 
1.0 27.2 68.2 62.0 13.5 31.0 
2.0 27.1 68.1 10.3 19.5 22.2 
1.3 27.2 67.6 9.1 9.8 9.1 
0.8 27.1 67.4 71.7 14.5 16.7 
1.3 27.2 67.2 75.3 69.8 
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1.1 27.1 66.0 59.8 65.9 
1.6 27.1 66.0 34.1 35.5 34.1 
0.4 27.3 66.6 18.7 10.1 9.4 
1.2 27.1 66.4 34.7 52.5 34.8 
0.5 27.3 66.0 9.2 9.9 9.2 

Avg 1.1 27.0 68.3 34.7 32.4 20.9 

21-Jul 
2.2 23.8 58.8 73.0 65.0 19.5 
0.6 24.1 58.0 15.0 28.6 15.0 
2.5 24.2 57.8 13.5 11.9 28.9 
0.3 24.0 57.8 19.0 17.1 8.9 
1.6 23.9 57.6 34.2 15.6 17.1 
1.8 24.1 57.4 45.8 19.7 21.4 
1.8 24.3 57.5 7.0 2.0 6.9 
1.6 24.0 57.6 10.0 10.2 5.1 
0.9 24.2 57.5 47.2 47.3 47.2 

Avg 1.5 24.1 57.8 29.4 24.2 18.9 

22-Jul 
2.3 19.9 64.1 16.3 64.9 16.3 
2.1 19.9 63.0 33.9 33.6 33.9 15.8 
0.9 20.2 60.8 27.6 41.6 48.4 27.6 
2.9 20.3 59.9 13.6 11.7 13.6 13.6 
1.6 20.5 59.8 69.9 60.0 69.9 20.0 
1.8 20.4 58.9 3.0 21.2 10.0 10.0 
1.9 20.5 58.6 61.8 30.2 61.8 35.3 
2.6 20.6 58.9 28.1 24.1 49.2 14.0 
2.4 20.9 57.5 38.9 71.7 38.9 22.3 
2.9 20.8 57.8 14.1 29.0 14.1 8.0 
3.5 20.7 57.4 16.1 31.7 16.1 32.2 
1.0 20.9 57.6 15.8 15.1 15.8 33.8 
3.7 20.6 57.4 31.9 15.7 31.9 31.9 
2.7 20.9 57.2 36.2 35.8 36.2 18.1 
2.5 21.0 57.3 12.3 13.1 12.3 5.8 
2.1 21.1 57.9 37.4 19.7 18.7 18.7 
1.4 21.0 57.0 17.3 20.2 8.7 17.3 
1.2 21.2 56.6 18.9 39.7 37.7 18.9 
2.5 20.9 56.2 19.1 20.1 19.1 19.1 
1.9 21.1 56.9 17.1 20.0 17.1 34.2 
1.2 21.0 56.9 34.8 20.3 34.8 34.8 

Avg 2.1 20.7 58.5 26.9 30.4 29.4 21.3 
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24-Jul 
0.6 22.9 55.2 7.3 6.4 7.3 7.3 
0.9 22.8 55.1 57.5 13.3 28.8 28.8 
0.5 22.7 54.3 10.0 9.8 10.0 10.0 
1.6 23.0 54.0 37.1 8.6 37.1 37.1 
1.9 22.8 53.9 20.3 19.8 9.5 20.3 
0.9 23.0 53.1 5.8 5.0 5.8 5.8 
2.5 23.1 53.0 17.2 27.6 30.2 30.2 
2.1 23.4 52.8 23.1 6.1 23.1 13.2 
2.1 23.4 52.7 8.7 9.2 4.1 8.7 
1.9 23.5 52.4 14.3 7.5 7.1 7.1 
2.0 23.4 52.1 6.8 14.1 6.8 13.6 
1.6 23.6 52.0 15.4 15.8 15.4 15.4 
1.8 23.4 51.2 25.0 27.4 12.5 25.0 

Avg 1.6 23.2 53.2 19.1 13.1 15.2 17.1 

25-Jul 
2.9 24.0 61.3 16.9 32.5 16.9 32.5 
3.1 23.9 60.0 11.7 12.8 5.5 11.7 
4.1 23.7 59.9 10.2 4.4 5.1 10.2 
1.5 23.8 59.6 20.6 9.5 20.6 5.5 
1.9 23.6 59.3 20.7 20.5 41.5 20.7 
1.2 23.9 58.9 12.2 45.1 45.8 45.7 
2.0 23.7 58.6 32.8 34.7 32.8 18.8 
3.5 23.5 58.4 47.3 51.6 47.3 47.3 
3.0 23.4 58.2 23.1 25.2 23.1 11.6 
2.6 23.6 58.6 23.0 25.0 23.0 23.0 

Avg 2.6 23.8 59.3 21.9 26.1 26.2 22.7 

30-Jul 
2.7 22.1 77.4 46.3 21.6 
2.6 22.3 76.8 21.0 9.8 
3.0 22.1 76.0 14.8 14.8 
3.1 22.0 74.1 63.4 31.7 
2.9 22.3 74.0 14.5 14.5 
2.4 22.6 73.5 15.5 8.8 
3.1 22.5 73.1 30.8 61.7 
3.5 22.6 73.2 30.8 14.4 
3.1 22.5 73.4 8.5 17.1 
2.9 22.6 73.6 21.8 21.8 

Avg 2.9 22.4 74.5 26.7 21.6 
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31-Jul 
2.3 24.2 64.6 18.8 20.7 37.6 
3.6 24.3 64.2 18.9 8.1 18.9 
3.8 24.3 64.0 32.5 75.2 64.9 
3.7 24.6 63.9 44.4 44.6 20.7 
4.2 24.7 63.8 52.4 52.1 52.4 
4.1 24.5 62.9 22.3 44.2 44.6 
3.1 24.8 63.1 21.8 43.1 43.6 
2.9 24.9 63.2 52.8 28.6 26.4 
4.9 24.7 63.0 47.6 52.1 47.6 
5.1 24.8 62.9 46.9 51.3 46.9 
2.4 24.7 62.5 12.7 14.0 12.7 

Avg 3.6 24.6 63.5 33.7 39.5 37.8 

05-Aug 
2.4 23.2 71.2 44.9 
2.8 23.1 71.0 38.2 38.2 
1.2 23.3 70.9 21.4 12.2 
3.1 23.0 70.5 23.0 13.2 
2.3 22.9 70.8 37.9 17.7 
2.5 23.2 70.6 27.6 12.9 
1.8 23.0 70.8 25.2 25.2 
2.8 23.0 70.7 34.8 34.8 
2.9 22.9 70.9 13.4 13.4 
3.5 22.9 70.6 45.4 45.4 
3.4 23.4 70.5 10.1 20.2 
2.9 23.1 70.0 15.3 15.3 

Avg 2.6 23.1 70.7 28.1 22.6 
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Confinement B 

Wind speed Temperature Relative Odor emission rate (OU.m3/s/m2
) 

(mis) (°C) humidity (%) 
Pl P6 P7 P8 P9 

20-Aug 
1.5 36.3 36.9 17.2 17.2 17.2 
0.6 36.4 36.6 33.6 33.6 33.6 
1.1 36.5 36.4 26.6 26.5 12.4 
2.1 36.6 36.3 37.7 17.6 37.7 
0.8 36.5 36.2 45.3 21.1 12.1 
1.3 36.7 35.5 16.2 16.2 60.9 
1.8 36.8 35.5 27.5 27.5 58.8 
1.3 36.7 35.3 18.9 33.0 18.9 
2.2 36.8 35.2 15.8 15.8 27.7 
1.6 36.9 35.0 19.8 19.8 11.3 
1.2 36.8 35.1 55.8 13.0 55.8 
2.8 36.9 35.0 75.1 5.0 18.8 

Avg 1.4 36.7 35.4 32.5 20.5 30.4 

21-Aug 
1.5 29.3 47.6 26.3 56.4 56.4 
2.3 29.5 47.4 34.7 34.7 34.7 
3.9 29.4 47.0 22.0 38.6 38.6 
3.8 29.2 46.7 26.7 13.3 26.7 
1.8 29.8 46.7 40.8 40.8 40.8 
2.4 29.7 46.3 31.6 31.6 31.6 
1.2 29.9 46.0 56.7 26.5 56.7 
2.4 29.8 46.0 22.3 22.3 22.3 
2.7 29.8 45.9 41.0 19.1 41.0 
2.8 29.9 45.7 33.7 15.7 33.7 
3.4 29.9 45.7 54.9 27.4 54.9 

Avg 2.6 29.7 46.4 35.5 29.7 39.8 

22-Aug 
0.8 24.7 51.0 21.5 37.6 76.3 10.8 21.5 
1.5 24.9 50.4 27.2 27.2 45.0 27.2 13.6 
0.2 25.0 50.2 18.9 9.5 35.7 37.8 9.5 
1.4 25.3 50.3 78.6 19.6 37.1 39.3 78.6 
2.4 25.1 50.3 63.1 63.1 59.6 36.0 63.1 
1.8 25.3 50.0 40.5 40.5 38.4 40.5 10.8 
2.3 25.2 49.7 28.4 14.2 55.0 56.9 28.4 
1.9 25.3 49.6 62.4 31.2 29.7 62.4 14.6 
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1.5 25.4 49.1 21.8 10.9 21.5 21.8 21.8 
1.7 25.6 49.1 22.7 11.3 22.5 22.7 22.7 
1.8 25.6 49.0 60.0 16.0 58.1 60.0 
2.0 25.7 48.9 22.0 6.3 20.9 47.1 12.6 

Avg 1.6 25.3 49.8 38.9 24.0 41.7 38.5 27.0 

27-Aug 
5.9 35.3 27.3 30.9 30.9 30.9 
4.3 35.3 27.3 25.7 25.7 45.0 
6.0 35.4 27.1 15.2 7.6 15.2 
5.4 35.4 27.1 25.0 12.5 25.0 
5.5 35.4 26.7 21.6 21.6 21.6 
6.9 35.4 26.5 37.8 37.8 5.4 
6.4 35.5 26.0 37.8 18.9 9.5 
5.9 35.5 26.2 34.7 34.7 19.8 
5.8 35.4 26.1 57.3 26.8 57.3 
5.4 35.7 25.4 56.0 56.0 26.1 
5.6 35.8 25.3 47.9 22.4 22.4 
5.8 35.8 25.1 46.8 21.8 46.8 
6.0 35.9 25.1 27.3 15.6 27.3 
5.9 35.9 24.9 2.7 2.7 2.7 

Avg 5.8 35.6 26.1 33.4 23.9 25.4 

28-Aug 
1.5 29.3 56.9 77.9 77.9 77.9 
2.4 29.3 56.5 46.8 46.8 12.5 46.8 
1.8 29.1 56.0 43.2 43.2 43.2 43.2 
0.6 29.4 55.5 73.0 73.0 41.7 
2.1 29.4 55.6 78.3 78.3 10.5 78.3 
2.4 29.6 54.5 24.7 24.7 24.7 14.1 
1.8 29.7 54.4 17.1 17.1 4.9 36.7 
1.5 29.8 54.3 36.7 36.7 36.7 36.7 
2.0 29.7 54.4 67.1 67.1 33.6 33.5 

Avg 1.9 29.5 55.4 51.6 51.6 26.0 45.9 

03-Sep 
4.1 31.5 37.8 19.5 39.0 19.5 19.5 
2.5 31.6 37.4 81.9 41.0 41.0 41.0 
2.8 31.5 36.9 58.8 27.5 58.8 27.5 
3.9 31.4 37.5 70.2 18.7 32.8 70.2 
3.4 31.3 36.9 22.2 11.1 83.3 38.9 
2.9 31.3 37.0 34.3 9.8 19.6 34.3 
4.4 31.4 36.8 28.0 28.0 28.0 49.0 
2.9 31.2 36.7 39.7 39.7 39.7 22.7 
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2.4 31.2 36.0 70.8 33.0 70.8 70.8 
3.9 31.1 35.9 55.1 25.7 55.1 55.1 
4.5 31.3 35.4 83.6 41.8 41.8 
5.2 31.4 35.1 65.8 32.9 65.8 32.9 

Avg 3.6 31.4 36.6 52.5 29.0 46.4 42.0 

04-Sep 
3.5 15.9 60.1 8.3 8.3 8.3 14.5 
2.0 15.9 60.4 48.0 12.8 48.0 22.4 
1.8 16.1 60.5 17.2 17.2 30.1 17.2 
1.4 16.0 60.2 29.4 8.4 16.8 29.4 
2.1 16.3 59.4 18.2 9.1 68.2 31.8 
2.0 16.5 59.6 57.0 32.6 57.0 32.6 
0.9 16.6 59.2 32.6 57.0 8.2 16.3 
2.1 16.7 59.0 28.0 14.0 48.9 48.9 
1.5 16.9 58.7 29.5 29.5 29.5 63.3 
1.4 16.8 58.9 55.0 25.7 14.7 25.7 
1.8 17.0 58.4 30.1 17.2 30.1 30.1 
2.4 16.8 58.6 13.8 6.9 24.1 24.1 
0.9 17.0 58.3 12.2 21.3 12.2 21.3 
3.1 17.1 58.7 21.3 12.2 21.3 21.3 
2.5 17.0 58.5 13.8 3.4 3.4 13.8 

Avg 2.0 16.6 59.2 27.6 18.4 28.1 27.5 

09-Sep AM 
0.9 29.7 29.5 7.1 6.7 14.1 
2.3 29.9 29.0 7.8 3.7 3.9 
2.4 30.0 29.2 18.6 17.6 39.8 
2.1 29.9 28.6 19.3 18.3 41.4 
1.7 29.8 28.4 62.5 27.6 62.5 
2.1 29.9 28.8 28.5 94.8 14.3 
2.3 30.1 28.7 56.8 27.0 13.2 
1.4 30.0 28.5 27.8 52.9 22.6 
3.1 30.1 28.6 34.4 33.3 34.4 
2.0 30.2 28.1 25.2 25.0 25.2 
1.9 30.3 28.0 39.2 22.0 39.2 

Avg 2.0 30.0 28.7 29.7 29.9 29.2 

09-Sep PM 
2.1 19.3 29.4 14.1 7.1 6.7 
2.2 19.2 29.5 7.8 7.8 7.8 
2.0 19.3 29.6 39.8 39.8 39.8 
1.9 19.4 28.1 27.6 19.3 41.4 
1.4 19.2 28.1 28.5 27.6 27.6 
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1.0 19.0 28.0 27.0 28.5 27.0 
2.0 19.1 28.3 52.9 27.0 52.9 
0.9 19.2 27.4 27.8 27.8 27.8 
0.3 19.0 27.6 33.3 33.3 33.3 
1.2 18.9 27.1 25.0 25.0 25.2 
1.0 18.9 27.0 22.0 22.0 39.2 

Avg 1.5 19.1 28.2 27.8 24.1 30.0 

10-Sep 
3.4 30.4 38.2 14.7 14.7 31.5 14.7 
3.9 30.2 36.1 9.5 16.5 16.5 16.5 
2.5 29.9 37.6 19.2 19.2 11.0 11.0 
3.5 30.3 37.2 11.9 5.9 20.8 5.9 
2.0 30.2 36.0 33.4 15.6 33.4 8.9 
1.9 30.4 35.9 46.0 21.5 46.0 46.0 
3.8 30.3 35.5 25.9 25.9 12.1 12.1 
3.9 30.4 35.4 51.2 11.9 25.6 11.9 
3.4 30.5 35.6 23.8 23.8 11.1 23.8 
4.5 30.6 34.8 39.9 39.9 39.9 5.3 
2.9 30.4 35.1 84.4 21.1 42.2 21.1 
3.7 30.4 35.0 42.7 42.7 42.7 21.4 
4.5 30.3 34.2 48.6 22.7 22.7 13.0 
3.6 30.2 33.0 9.6 9.6 20.6 9.6 

Avg 3.4 30.3 35.7 32.9 20.8 26.9 15.8 

17-Sep 
5.6 28.1 42.5 63.3 31.7 31.7 
5.2 28.0 42.1 21.8 21.8 12.5 
4.5 28.1 41.5 23.4 5.9 11.7 
3.1 28.2 41.8 12.5 12.5 24.9 
2.9 28.1 40.1 67.5 33.8 67.5 
3.1 28.2 40.3 63.0 63.0 63.0 
4.0 28.3 39.9 30.6 30.6 53.5 
2.8 28.3 39.7 21.5 37.7 37.7 
4.6 28.4 39.2 64.1 29.9 29.9 
3.9 28.3 39.5 27.4 15.7 58.7 
4.9 28.2 39.4 38.1 21.8 38.1 
5.1 28.3 38.8 38.1 21.8 21.8 
6.5 28.2 38.2 29.6 29.6 16.9 

Avg 4.3 28.2 40.2 38.5 27.4 36.0 

18-Sept AM 
1.5 25.9 51.9 30.0 15.0 15.0 
1.9 25.9 51.8 39.3 39.3 19.7 
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2.2 26.0 51.9 14.4 14.4 14.4 
1.8 26.1 51.7 19.0 19.0 19.0 
2.6 26.2 51.5 48.4 48.4 24.2 
2.8 26.0 51.8 60.0 14.0 60.0 
2.1 26.1 51.6 14.1 28.2 14.1 
1.8 26.2 51.4 64.2 64.2 36.7 
1.9 26.2 51.5 61.8 61.8 30.9 
1.7 26.1 51.6 23.8 23.8 23.8 

Avg 2.0 26.1 51.7 37.5 32.8 25.8 

18-Sep PM 
4.1 19.5 64.5 27.8 55.5 27.8 
2.9 19.6 64.1 32.9 15.3 15.3 
2.1 19.5 64.0 11.7 11.7 11.7 
2.8 19.5 63.5 10.5 18.3 10.5 
3.6 19.7 62.7 18.0 10.3 18.0 
2.8 19.8 62.1 10.6 10.6 10.6 
2.4 19.9 62.0 15.7 15.7 15.7 
3.5 19.9 62.3 28.2 13.2 13.2 
3.8 20.0 62.0 13.3 28.4 28.4 
4.0 19.9 61.8 47.6 23.8 47.6 
4.6 20.1 61.4 46.8 23.4 23.4 

Avg 3.3 19.8 62.8 23.9 20.6 20.2 

24-Sept AM 
2.1 19.7 22.9 13.3 3.8 28.5 
1.2 19.9 22.8 55.7 55.7 13.0 
2.0 19.8 22.1 53.1 13.3 26.6 
2.5 20.0 22.2 9.6 4.5 9.6 
1.0 20.2 21.7 14.7 14.7 58.7 
0.7 20.3 21.9 9.5 4.4 18.9 

Avg 1.6 20.0 22.3 26.0 16.1 28.9 

24-Sept PM 
1.2 17.0 24.2 13.3 13.3 28.5 
2.0 17.1 24.3 13.0 26.5 26.5 
1.5 17.0 24.0 26.6 26.6 26.6 
1.8 16.9 24.1 18.9 18.9 18.9 
1.6 16.8 23.6 29.6 14.7 14.7 
1.8 16.9 23.4 9.5 9.5 4.4 

Avg 1.7 17.0 23.9 18.5 18.2 19.9 
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25-Sept 
2.1 9.5 52.8 43.2 43.2 20.2 43.2 
1.9 9.6 51.9 13.1 49.1 13.1 49.1 
2.4 9.4 51.0 19.1 19.1 19.1 40.9 
1.9 9.3 51.7 11.0 11.0 11.0 19.2 
3.4 9.4 50.4 13.4 13.4 23.4 13.4 
3.5 9.5 50.1 37.5 17.5 37.5 37.5 
3.9 9.3 50.5 6.6 23.3 3.8 3.8 
3.1 9.2 50.4 15.3 12.3 12.3 15.3 
4.0 9.3 49.8 21.5 16.9 16.9 16.9 
3.6 9.4 49.2 36.3 13.8 36.3 36.3 
2.8 9.3 49.8 29.5 23.5 29.5 29.5 
2.5 9.2 49.5 46.9 23.5 23.5 46.9 

Avg 2.9 9.4 50.6 24.5 22.2 20.6 29.3 
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