Proceedings of the Iowa Academy of Science

Volume 62 | Annual Issue

Article 42

1955

Bending of a Rectangular Plate with Even and Odd Order of Boundary Conditions

J. P. Li Iowa State College

Let us know how access to this document benefits you

Copyright ©1955 lowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation

Li, J. P. (1955) "Bending of a Rectangular Plate with Even and Odd Order of Boundary Conditions," *Proceedings of the Iowa Academy of Science, 62(1),* 384-392. Available at: https://scholarworks.uni.edu/pias/vol62/iss1/42

This Research is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

Bending of a Rectangular Plate with Even and Odd Order of Boundary Conditions

By J. P. L1¹

NOMENCLATURE

The following nomenclature is used in this paper:

 ${\bf a}_{\bf b}$ dimensions of a rectangular plate

(____

h Thickness of the plate

E Young's modulus

J Poisson's ratio

q intensity of distributed load

D flexural rigidity of the plate $\frac{Eh^3}{12(1-D^2)}$

w deflection of the plate in general

 ∇^4 biharmonic operator in rectangular coordinates

GENERAL ANALYSIS

The problem of bending of a rectangular plate with clamped edges has attracted attention of authors for many years but exact solutions have never been obtained. The difficulty arises from the fact that there is no simple procedure for selecting a proper deflection function that will satisfy both the differential equation of bending and the specified boundary conditions. The only exception occurs when two opposite edges of a rectangular plate are simply supported. In such a case, a simple solution either in the form of a single series as proposed by Levy, or in the form of a double series as proposed by Navier (9) can be easily derived. However, these types of solutions cannot be applied to a plate with two adjacent edges clamped. Because of this difficulty, different approximate methods have been proposed by many authors since 1903. A rather complete list of references of the early works can be found in the discussion of Stiles paper by D. Young (2).

Recently, Weinstein (4) has proposed an approximate method based on variation principle which has been successfully applied to a plate with all edges clamped. Later, this method has been extended by Stiles (6) (7) to investigate bending of a plate with two adjacent edges clamped and the others simply supported. Huang and Conway (8) have also investigated the bending of a

¹Assistant Professor of Theoretical and Applied Mechanics, Iowa State College, Ames, Iowa.

1955] BENDING OF RECTANGULAR PLATE

rectangular plate with two adjacent edges clamped and the others either simply supported or free subjected to uniformly distributed load only. In each case, solutions are obtained by the method of superposition. Since this method depends upon the symmetrical properties of the deflection surface to satisfy some of the boundary conditions, it is obvious that it can not be applied to other loading conditions.

It is the purpose of this paper to show that a systematic approach to this class of problem can be obtained by Fourier method (1) which is practically an extension of Timoshenko's method (3).

Based on conventional assumptions of thin plate theory for small deflections, the problem of bending of a laterally loaded rectangular plate is reduced to the integration of Lagrange equation:

We take deflection of the plate in the form:

 $w = w_1 + w_2$ (2)

in which w_1 represents the deflection of a simply supported plate subjected to same type of loading as the considered plate, and w_2 represents the deflection of a correction state which is selected as two infinite series of particular solutions of the biharmonic equation

 $\nabla^4 w_2 = O \dots (3)$

Each of the two series of w_2 is so chosen as to give a Fourier series expansion for one component of displacement at the proper boundary. Then the coefficients of the series can be adjusted by Fourier analysis to satisfy not only the specified conditions at the boundary, but also to eliminate any undesirable quantities which may have been introduced by the other series. Because of this interrelated nature of the boundary conditions, the final solution is obtained by solving a system of an infinite number of linear simultaneous equations. Physically speaking, the correction state can be interpretated either as deflections due to distributed moments along the edges of the plate when it is a correction for slope or bending moment, or as deflections due to distributed forces along the edges when it is a correction for shear force or deflection.

It is seen that this method can be applied to a plate subjected to any kind of loading with any combination of even and odd order of boundary conditions. Except for minor adjustments, practically the same type of function can be used for the correction state for various problems. Therefore, different problems with different loading conditions and boundary conditions can be handled almost in a routine manner. The following two examples will serve to illustrate the procedures:

https://scholarworks.uni.edu/pias/vol62/iss1/42

386

IOWA ACADEMY OF SCIENCE

[Vol. 62

Example 1. Rectangular Plate with Two Adjacent Edges Clamped and the Others Simply Supported

We consider the case of a uniformly distributed load only. If the coordinate axes are chosen as shown in Fig. 1, the deflection

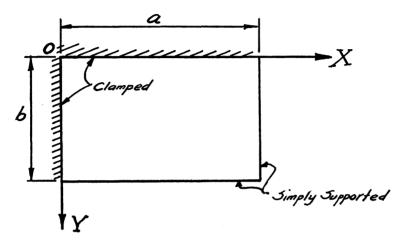
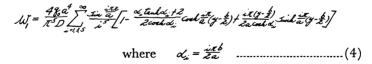


Fig. I Rectangular Plate with Two Adjacent Edges clamped and the Others Simply Supported

of a simply supported plate subjected to a uniformly distributed load of intensity q is given by (9):



For the correction state, we take w_2 in the form:

$$\mathcal{U}_{\mathcal{L}} = \mathcal{D}_{\mathcal{D}} \underbrace{\int_{-\infty}^{\infty} (A_{n} \operatorname{cool} \frac{n\pi y}{a} + B_{n} \frac{n\pi y}{a} \operatorname{sink} \frac{n\pi y}{a} + C_{n} \operatorname{sink} \frac{n\pi y}{a} + D_{n} \frac{n\pi y}{a} \operatorname{cool} \frac{n\pi y}{a} \operatorname{sin} \frac{n\pi y}{a} }{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (A_{n} \operatorname{cool} \frac{n\pi y}{b} + B_{n} \frac{n\pi y}{b} \operatorname{sink} \frac{n\pi y}{b} + C_{n} \operatorname{sink} \frac{n\pi y}{b} + D_{n} \frac{n\pi x}{b} \operatorname{cool} \frac{n\pi y}{b} \operatorname{sin} \frac{n\pi y}{b} }{\int_{-\infty}^{-\infty} \int_{-\infty}^{\infty} (A_{n} \operatorname{cool} \frac{n\pi y}{b} + B_{n} \frac{n\pi y}{b} \operatorname{sink} \frac{n\pi y}{b} + C_{n} \operatorname{sink} \frac{n\pi y}{b} + D_{n} \frac{n\pi x}{b} \operatorname{sink} \frac{n\pi y}{b} }{\int_{-\infty}^{-\infty} \int_{-\infty}^{\infty} (A_{n} \operatorname{cool} \frac{n\pi y}{b} + B_{n} \frac{n\pi y}{b} \operatorname{sink} \frac{n\pi y}{b} + C_{n} \operatorname{sink} \frac{n\pi y}{b} + D_{n} \frac{n\pi y}{b} \operatorname{sink} \frac{n\pi y}{b} }{\int_{-\infty}^{-\infty} \int_{-\infty}^{\infty} (A_{n} \operatorname{cool} \frac{n\pi y}{b} + B_{n} \frac{n\pi y}{b} \operatorname{sink} \frac{n\pi y}{b} + C_{n} \operatorname{sink} \frac{n\pi y}{b} + D_{n} \frac{n\pi x}{b} \operatorname{sink} \frac{n\pi y}{b} }{\int_{-\infty}^{-\infty} \int_{-\infty}^{\infty} (A_{n} \operatorname{cool} \frac{n\pi y}{b} + B_{n} \frac{n\pi y}{b} \operatorname{sink} \frac{n\pi y}{b} + C_{n} \operatorname{sink} \frac{n\pi y}{b} +$$

The boundary conditions are:

$$w = 0$$
, when $x = 0$, and when $x = a$
 $y = 0$, and when $y = b$ (6)

Published by UNI ScholarWorks, 1955

$$\frac{\partial^2 w}{\partial x^2} + D \frac{\partial^2 w}{\partial y^2} = 0, \text{ when } x = a$$

$$\frac{\partial^2 w}{\partial y^2} + D \frac{\partial^2 w}{\partial x^2} = 0, \text{ when } y = b$$

$$\frac{\partial w}{\partial x} = 0, \text{ when } x = 0$$

$$\frac{\partial w}{\partial y} = 0, \text{ when } y = 0$$
(8)

To satisfy boundary conditions (6), we have:

$$A_{m} = A_{n} = 0 \qquad (9)$$

$$B_{m} = -\left(\frac{C_{m}}{2\alpha_{m}} + D_{m} \coth 2\alpha_{m}\right)$$

$$B_{n} = -\left(\frac{C_{n}}{2\alpha_{n}} + D_{n} \coth 2\alpha_{n}\right)$$

$$(10)$$

$$m\pi b \qquad n\pi a$$

J

Where
$$\alpha_{\rm m} = \frac{{
m m}\pi {
m b}}{2{
m a}}, \ \alpha_{\rm n} = \frac{{
m n}\pi {
m a}}{2{
m b}}$$

387

To satisfy boundary conditions (7), we obtain:

Substituting the relations between the coefficients (9), (10), (11) and (12) to equation (5), w_2 takes the following form:

$$W_{2} = \frac{g_{0}a}{D_{m+1,1,5}} \sum_{m} \left[-\frac{m\kappa}{2} \left(\tan k \, 2d_{m} \right) g_{5} \sin k \frac{m\kappa y}{2} - \frac{4d_{m}}{\sin k + 4} \sin k \frac{m\kappa y}{2} + \frac{m\kappa y}{2} \cos k \frac{m\kappa y}{2} \right] \\ + \frac{g_{0}b}{D_{n}} \sum_{n=1,1,5}^{\infty} \sum_{m} \left[-\frac{n\kappa}{5} \left(\tanh 2d_{m} \right) g_{5} \sin k \frac{m\kappa y}{5} - \frac{4d_{n}}{\sin k + 4} \sin k \frac{n\kappa y}{5} + \frac{\kappa \kappa y}{5} \cos k \frac{m\kappa y}{5} \right] \\ - \frac{g_{0}b}{D_{n+1,1,5}} \sum_{n=1,1,5}^{\infty} \left[-\frac{\kappa \kappa}{5} \left(\tanh 2d_{n} \right) g_{5} \sin k \frac{m\kappa y}{5} - \frac{4d_{n}}{\sin k + 4} \sin k \frac{m\kappa y}{5} + \frac{\kappa \kappa w}{5} \cos k \frac{m\kappa y}{5} \right] \\ - \frac{2}{3} \left[-\frac{\kappa \kappa}{5} \left(\tanh 2d_{n} \right) g_{5} \sin k \frac{m\kappa y}{5} - \frac{4d_{n}}{\sin k + 4} \sin k \frac{m\kappa y}{5} + \frac{\kappa \kappa w}{5} \right] \right]$$

$$(13)$$

The coefficients D_m and D_n are determined by the boundary conditions (8). To satisfy the first of boundary conditions (8), it requires:

 $\frac{1}{\sum_{i=1,3}^{2}} \int_{a}^{\frac{1}{2}} \int_{a}^{a} \int_{a}^{a} \int_{a}^{a} \int_{a}^{\frac{1}{2}} \int_{a}^{\frac{1$ + 22 2 2 an In [yeal may - tenkiden y suit at - tink 4 dm] $f\left(\frac{b}{a}\right)^{4}\sum_{n=1}^{\infty}\left(d_{n}\right)D_{n}\left[1-\frac{4d_{n}}{\sin 4d_{n}}\right]\sin \frac{n\pi y}{b}=0$

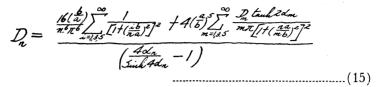
4

388

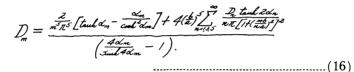
IOWA ACADEMY OF SCIENCE

```
[Vol. 62
```

Multiply by Sin $\frac{n\pi y}{b}$, and integrate from O to b. We obtain:



Similarly, to satisfy the second of boundary conditions (8) gives:



Equations (15) and (16) give two sets of infinite number of equations to determine the coefficients D_m and D_n . After these coefficients are determined, the resultant deflection of the plate can be obtained by superimposing w_1 from equation (4) and w_2 from equation (5).

If the plate is subjected to any other type of loadings, solutions can be derived by following similar procedures. Of course, w_1 has to be changed to proper functions, but w_2 remains practically the same as equation (5). The equations to determine the coefficients of w_2 will be the same as equations (15) and (16) except the first terms in the numerators.

Example 2. Rectangular Plate with Two Adjacent Edges Clamped and the Others Free.

For this problem, a slight adjustment for both w_1 and w_2 is necessary in order to obtain the correct solution. If we follow the same procedures used for the first example, the function w_2 for the correction state is unable to eliminate both the distributed reactions along the free edges and the concentrated reaction at the free corner introduced by w_1 . To avoid this difficulty, we consider w_1 as the deflection of a simply supported plate of double the dimensions of the original plate as shown in dotted lines on Fig. 2. Then the function for the correction state can be selected in similar form as before, and the coefficients of which can be adjusted so as to satisfy all the boundary conditions without difficulty.

Let us consider again the case of uniformly distributed load. If the coordinate axes are chosen as shown in Fig. 2, the deflection

5

BENDING OF RECTANGULAR PLATE

389

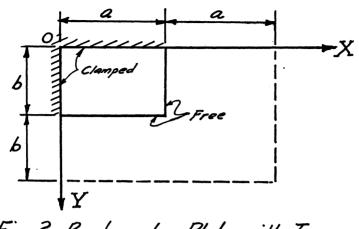
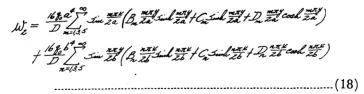


Fig. 2. Rectangular Plate with Two Adjacent Edges Clamped and the Others Free

of a simply supported plate of the size $2a \times 2b$ subjected to a uniformly distributed load of intensity q_0 is given by:

 $\mathcal{W}_{i} = \frac{649_{o}a}{D} \sum_{i=1}^{i} \frac{\sin 2a}{z^{5}\pi^{5}} \left[-\left(\frac{d_{i} \operatorname{tenh}d_{i} + 2}{2 \operatorname{coch} d_{i}}\right) \operatorname{coch} \frac{i\pi(y-b)}{a} + \frac{i\pi(y-b)}{4a \operatorname{coch} d_{i}} \frac{\sin(y-b)}{2} \right]$(17)

 w_2 is taken in the following form:



The boundary conditions are:

For clamped edges:

$$w = 0$$
, when $x = 0$
and $y = 0$
 $\frac{\partial w}{\partial x} = 0$, when $x = 0$
 $\frac{\partial w}{\partial x} = 0$, when $y = 0$
(20)

https://scholarworks.uni.edu/pias/vol62/iss1/42

Li: Bending of a Rectangular Plate with Even and Odd Order of Boundar

390

IOWA ACADEMY OF SCIENCE

[Vol. 62

For free edges:

$$\frac{\partial^{3}w}{\partial x^{3}} + (2 - \partial) \frac{\partial^{3}w}{\partial x \partial y^{2}} = 0, \text{ when } x = a$$

$$\frac{\partial^{3}w}{\partial y^{3}} + (2 - \partial) \frac{\partial^{3}w}{\partial y \partial x^{2}} = 0, \text{ when } y = b$$

$$\frac{\partial^{2}w}{\partial x^{2}} + \partial \frac{\partial^{2}w}{\partial y^{2}} = 0, \text{ when } x = a$$

$$\frac{\partial^{2}w}{\partial y^{2}} + \partial \frac{\partial^{2}w}{\partial x^{2}} = 0, \text{ when } y = b$$
(21)
(21)

It is seen that boundary conditions (19) are already satisfied. Boundary conditions (21) will be satisfied, if

$$B_{m} = \frac{(1-\mathcal{J})(\cosh\alpha_{m}) C_{m} + [(1-\mathcal{J})\alpha_{m}\sinh\alpha_{m} - (1+\mathcal{J})\cosh\alpha_{m}] D_{m}}{(1+\mathcal{J})\sinh\alpha_{m} - (1-\mathcal{J})\alpha_{m}\cosh\alpha_{m}}$$
(23)

and

$$B_{n} = \frac{(1-\partial)(\cosh \alpha_{n}) C_{n} + [(1-\partial)\alpha_{n}\sinh\alpha_{n} - (1+\partial)\cosh\alpha_{n}]D_{n}}{(1+\partial)\sinh\alpha_{n} - (1-\partial)\alpha_{n}\cosh\alpha_{n}}$$
(24)

By similar procedures used in the first example, it is easy to verify that to satisfy the boundary conditions (20) and (22), we obtain the following equations:

$$\frac{64(d_{h})}{m^{-1/3.5}} \frac{\int \frac{(-1)^{\frac{1}{2}} (J + (\frac{\alpha_{h}}{m_{b}})^{2}) \sin dx d_{m} - (\frac{\alpha_{h}}{m_{b}}) (J + J) \sin dx d_{m} + D_{m} \left[(\frac{\alpha_{h}}{m_{b}}) (J + J) \cos dx d_{m} - (J - J) \cos dx d_{m} + D_{m} \left[(\frac{\alpha_{h}}{m_{b}}) (J + J) \sin dx d_{m} - (J - J) \cos dx d_{m} - (J - J) \cos dx d_{m} - (J - J) \sin dx d_$$

$$\frac{4}{\left[\frac{1}{\left(\frac{1}{na}\right)^{2}}\right]^{\frac{1}{2}}}{\left[\frac{1}{\left(\frac{nb}{na}\right)^{2}}\right]^{\frac{1}{2}}} \frac{d_{n} - \left(\frac{nb}{na}\right)(1-2)}{d_{n} - \left(\frac{nb}{na}\right)(1-2)} \frac{d_{n} + D_{n} \left[\frac{nb}{na}\right](1+2)}{d_{n} - \left(\frac{1}{na}\right)(1-2)} \frac{d_{n} - \left(\frac{1}{na}\right)(1-2)}{d_{n} - \left(\frac{1}{na}\right)^{\frac{1}{2}}} \frac{d_{n} - \left(\frac{1}{na}\right)^{\frac{1}{2}}} \frac{d_{n} - \left(\frac{1}{na}\right)^{\frac{1}{2}}} \frac{d$$

BENDING OF RECTANGULAR PLATE

391

8

 $8n\pi(\frac{a}{2}) \frac{\sum_{i=1}^{\infty} \frac{1}{2} \left(-\frac{b}{2} \right) \left[\frac{1}{2} \left(-\frac{b}{2} \right) \frac{1}{2} \left(-\frac{b}{2} \right) \frac{1}{2} \frac$ + 4 d_n^2 (1-2) {C_n [2 conk dn + 2 conk dn] - [1-2), + (1-2), dn] D_n } Sink dn - (1-2), dn cock dn $-\frac{16}{\pi\pi^4} \sum_{i=1}^{\infty} \frac{(i)^{i}}{i^3} \Big| \frac{(i+2)(\frac{\pi^2}{4b})^2}{(i+2)(\frac{\pi^2}{4b})^2} \Big| = 0$
$$\begin{split} &g_{\mathcal{M}\mathcal{K}} \begin{pmatrix} b \\ a \end{pmatrix} = \int_{-\infty}^{\infty} \frac{(1)^{\frac{d}{2}} (\cdot D) \left[\frac{(1)^{\frac{d}{2}} (\frac{mb}{na})^{\frac{d}{2}} \sin d_{2n} + \cosh d_{n} \right] C_{n} + \left[\frac{d_{n} \sin d_{n} - \frac{(1+D)}{(1+D)} \cosh d_{n} + \frac{(1+D)}{(nb)} d_{n} \cos d_{n} \right] D_{n} \right]}{\pi^{\frac{d}{2}/3}} \\ &= \frac{1}{3} \frac{5}{5} \frac{\left[1 + \left(\frac{mb}{na} \right)^{\frac{d}{2}} \right]^{\frac{d}{2}} \left[-\sin d_{n} - \frac{(1+D)}{(1+D)} \sin \alpha_{n} \cos d_{n} - \frac{(1+D)}{(1+D)} \sin \alpha_{n} \sin \beta_{n} \right] D_{n} \right]}{4 \frac{4 d_{n}^{2} (1+D) \left\{ C_{m} \left[\frac{2\cos d_{n}^{2} d_{n}}{(1+D)} + \sin d_{n} d_{n} \right] - \left[\frac{(1+D)}{(1+D)} + \frac{(1+D)}{(1+D)} \sin \beta_{n} \right] D_{n} \right\}}{5 \frac{1}{2} \frac{1}{2$$
 $f \frac{Z\left[\alpha_m \tan \alpha_m (1-2)-Z \right](\cosh \alpha_m - 1)\right]}{m^3 \pi^3 \cosh \alpha_m} = 0$(28)

Equations (25), (26), (27) and (28) give four sets of an infinite number of equations to determine the coefficients C_m , D_m , C_n , and D_n . B_m and B_n are determined from equations (23) and (24). After these coefficients are determined, the resultant deflection of the plate can be obtained by superimposing w_1 from equation (17) and w_2 from equation (18). If the plate is subjected to any other type of loadings, solutions can also be determined by following similar procedures.

Numerical Example:

Let us consider a square plate with two adjacent edges clamped and the others free subjected to a uniformly distributed load of intensity q_o . Equations (25), (26), (27) and (28) are reduced to two sets of an infinite number of equations for this case. In order to check the results by Huang and Conway (8), we consider the particular case with J = O. If we use only one term of the series, we have the following simultaneous equations:

 $-0.26740633 \text{ C}_1 + 2.0388978 \text{ D}_1 = -0.00436351$ $-190.26898 \text{ C}_1 + 33.259486 \text{ D}_1 = 0.0740696$ from which $\text{C}_1 = -0.0007813$ and $\text{D}_1 = -0.0022426$ Substituting these values in to equation (23), we have

 $B_1 = 0.0027072$

The maximum deflection is at the free corner and is equal to:

(w)
$$\frac{q_0 a^*}{D}$$

https://scholarworks.uni.edu/pias/vol62/iss1/42

392

[Vol. 62

If two terms of the series are used, we obtain four simultaneous equations:

 $-0.26740643 C_1 + 2.0388978 D_1 - 3.2504609 C_3 + 0.6926047$ $D_3 = -0.00436351$

37.412468
$$C_1$$
 -6.8038228 D_1 + 514.95619 C_3 + 146.68875 D_3 = -0.00326226

 $-190.26898 C_1 + 33.259486 D_1 - 192.48457 C_3 + 41.014407$ $D_3 = 0.0740696$

 $-8.313881 \ \mathbf{C_1} \ + \ 1.5119607 \ \mathbf{D_1} \ -3380.676 \ \mathbf{C_3} \ + \ 26.280553$ $D_3 = 0.0001844$

Solving these equations, we have:

	$C_1 = -0.00077191,$	$D_1 = -0.00226133$
	$C_3 = 0.00000134,$	$D_3 = 0.00006505$
and	$B_1 = 0.00270543,$	$B_3 = -0.00006539$

Using these values, the maximum deflection is found to be

(w)
$$_{\max} = 0.036222 \quad -\frac{q_0 a^*}{D}$$

which checks very closely with Huang and Conway's results.

If three terms of the series are used, the result will be affected only in the fourth decimal point.

References

- 1. "Application of the Fourier Method to the Solution of Certain Boundary Problems in the Theory of Elasticity" by Gerald Pickett, Trans. A.S.M.E.,
- Problems in the Theory of Ensitienty 27 Control 1944, Vol. 66, pp.A-176-A-182.
 Discussion of Stiles paper "Bending of Clamped Plate" by Dana Young, Trans. A.S.M.E., 1947, Vol. 69, pp. A-254-A-255.
- 3. "Bending of Rectangular Plate with Clamped Edges" by S. Timoshenko, Proceedings of the Fifth International Congress for Applied Mechanics, Cambridge, Mass., 1938, p.49.
- 4. "Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques" by A. Weinstein, memorie des science Mathematique, 1937, Vol. 88, p.1.
- 5. "On the Bending of a Clamped Plate" by A. Weinstein and D. H. Rock, Quarterly of Applied Mathematics, 1944, Vol. 2, p.262.
- 6. "Bending of Clamped Plates" by W. B. Stiles, Ph.D. thesis, Iowa State College, Ames, Iowa. 1947.
- 7. "Bending of Clamped Plate" by W. B. Stiles, Journal of Applied Me-chanics, Trans. A.S.M.E., 1947, Vol. 69, p.A-55.
- 8. "Bending of Uniformly Loaded Rectangular Plate with Two Adjacent Edges Clamped and the Others Either Simply Supported or Free" by M. K. Huang and H. D. Conway, Journal of Applied Mechanics, Trans. A.S.M.E., 1952, Vol. 74, p.A-451.
- 9. "Theory of Plates and Shells" by S. Timoshenko, McGraw-Hill Book Co., Inc., New York, N.Y., 1940.

DEPARTMENT OF (MATHEMATICS) THEORETICAL AND APPLIED MECHANICS

IOWA STATE COLLEGE Ames, Iowa

Published by UNI ScholarWorks, 1955