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A Note on Defining an Extension of a 
Probability Measure on Subsets of 
Function Space, By Applying 
One of J. L. Doob's Theorems* 

By w. A. SMALL 

The following definitions are based on concepts in references (2) 
and ( 4). 

Definition 1: Let W denote the set of all real valued functions, w ( t), 
of a real variable t. 
Definition 2: Let t 1 , ... , tn be a finite set of t values. 
Let - oo < ai <b 1 < + oo, i = 1, ... , n. Then the set N of 
functions: 

' E { · l 
N = w(t) £W? a1 < w(t1) < bi,1=1, .. .,n S 

is defined to be a neighborhood of any function in the set N. 

It is noted that Wis itself a neighborhood of each function in W. 

Definition 3: An open set in Wis any union of neighborhoods. 

Definition 4: A Borel Field F of subsets of W is a class of subsets 
of W such that W £ F, and whenever A£ F and B £ F, then A-B £ F; 
and whenever each set of the sequence of sets Ai. ... , An, ... , is 
in F, then so is the union of the sequence. 

It is noted that the intersection of the sets in the sequence is also 
in F. 

Definition 5: A probability measure on subsets of function space is 
a non-negative, completely-additive, complete, set function P(A) de
fined on a Borel Field of subsets of W, and such that P(W) = 1. 

Definition 6: F 2 is the Borel field generated by the open sets. 

Definition 7: F 0 is the Borel field generated by the neighborhoods. 

Definition 8: Let P be any probability measure defined on a Borel 
field F of subsets of W; then the three concepts W ,F ,P, together, 
are defined to be a Borel Probability Field in Function Space, ab
breviated by bpf, and denoted by (W,F,P). 

Definition 9: A bpf (W,F0,P0 ) is called a Fundamental Borel Prob
ability Field in Function Space, appreviated fbpf. 

*The following note is based on part of a dissertation written under the 
direction of Professor Dorothy L. Bernstein of the University of Rochester. 
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Definition 10: If (W,F,P) is any bpf; and if A< W, then 
P*(A) =inf P(E), E £ F, E >A, is defined to be the outer 

E 
P measure o j the set A. 

Definition 11: Let (W,F,P) be a bpf, and let W' be a subset of W 

such that P*(W') = 1. Let W1 denote the complement of W'. If A 
is any subset of W such that 

A= EW' + HW, where E and H belong to F, then define the 
set function P' (A) by: 

P'(A) = P(E). It can be shown that the class F' of all sets of 

the form EW' + HW, where E and H belong to F, is a Borel field 
which includes F, and that P'(A) is a probability measure defined on 
a Borel field which includes F', and such that P' reduces to Pon the 
sets in F. Then the bpf (W,F',P') is called an adjunction extension 
of (W,F,P) and is said to be obtained from (W,F,P) by adjoining 
W'toF. 

The following theorem is a formalization of statements made by 
J. L. Doob (2:p.23; 3:p.69) and is also based on a theorem of 
J. L. Doob's (1,p.109, theorem 1.1): 

Theorem I: Let (W,F,P) be an arbitrary bpf. A necessary and 
sufficient condition that there exist an adjunction extension (W,F',P') 
of (W,F,P) obtained by adjoining W' to F is that P* (W') = 1. 

Proof: This theorem is proved by showing that P'(E), as defined 
in the statement of the theorem is a probability measure (unique up 
to sets of P measure zero) such that its domain of definition includes 
the Borel field F' > F, and such that P' reduces to Pon F. 

The complete additivity and other probability measure properties 
of the P' measure follow from the corresponding properties of P 
measure, and from the uniqueness of P' which itself follows from 
Doob's theorem (1,p.109, theorem 1.1). The fact that F' is a Borel 
field which includes F follows from the properties of F. 

Now following Doob and S. Kakutani (2,p.25) define the set func

tion P; on the subsets of W as follows: 

Definition 12: If G is any open set in W, and (W,F 0,P0 ) is any 
fbpf, then let P2 .(G) =sup Po(Eo), Eo t: Fo, Eo < G. 

Eo 

Definition 13: If A is any subset of W, then let 
(A)= inf P2 .(G), Gopen, G >A 

G 
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It can then be shown that P; is an outer measure, and that 

the P = measurable sets include the Borel field F 2 • 

Let P 2 denote the P~ measure of the sets in F 2 • P 2 measure is 

called Kakutani measure. 

It is sometimes desirable to know whether, when there exists an 
adjunction extension (W,F'0 ,P'0 ) of (W,F0 ,P0 ), the adjoined set W' 
belongs to F 2 ( 2 ,p.29) ; the reason for this being that it is desirable 
to use the bpf (W,F2 ,P2 ) in studying probabilities in function space. 
(2,p.25,26,29). It is clear that an adjunction extension (W,F'2 ,P'2 ) 

of (W,F 2 ,P 2 ), if it exists, corresponding to the ad junction extension 
(W,F'0 ,P'0 ) of (W,F0 ,P0 ) would serve the same purpose, even 
though W' might not belong to F 2 • The condition for the existence 
of this extension is given in the following theorem, which is Theorem 
I applied to the bpf (W,F2 ,P2 ). 

Theorem II: Suppose (W,F'0 ,P'0 ) is an adjunction extension of a 
fbpf obtained by adjoining W' to F 0 • Then a necessary and sufficient 
condition that there exist a corresponding adjunction extension of 
(W ,F 2 ,P 2 ) obtained by adjoining W' to F 2 is that P; (W') = 1. 

Proof: The proof is the same as in Theorem I, except that (W,F 2 ,P2 ) 

is used instead of the arbitrary bpf. 

Without going into the concept of a measurable Borel Probability 
Field in function space (2,p.26-29), it may be stated that whenever 
the condition of Theorem II is satisfied for a measurable adjunction 
extension of a fbpf, then the corresponding adjunction extension 
of (W,F 2 ,P2 ) is also measurable. This follows from the fact that 
F' o ::::; F' 2· 
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