[Proceedings of the Iowa Academy of Science](https://scholarworks.uni.edu/pias)

[Volume 65](https://scholarworks.uni.edu/pias/vol65) [Annual Issue](https://scholarworks.uni.edu/pias/vol65/iss1) Article 48

1958

A Note on Defining an Extension of a Probability Measure on Subsets of Function Space, By Applying One of J. L. Doob's Theorems

W. A. Small Grinnell College

[Let us know how access to this document benefits you](https://scholarworks.uni.edu/feedback_form.html)

Copyright ©1958 Iowa Academy of Science, Inc.

Follow this and additional works at: [https://scholarworks.uni.edu/pias](https://scholarworks.uni.edu/pias?utm_source=scholarworks.uni.edu%2Fpias%2Fvol65%2Fiss1%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Small, W. A. (1958) "A Note on Defining an Extension of a Probability Measure on Subsets of Function Space, By Applying One of J. L. Doob's Theorems," Proceedings of the Iowa Academy of Science, 65(1), 332-334.

Available at: [https://scholarworks.uni.edu/pias/vol65/iss1/48](https://scholarworks.uni.edu/pias/vol65/iss1/48?utm_source=scholarworks.uni.edu%2Fpias%2Fvol65%2Fiss1%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Research is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

[Offensive Materials Statement:](https://scholarworks.uni.edu/offensivematerials.html) Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

A Note on Defining an Extension of a Probability Measure on Subsets of Function Space, By Applying One of J. L. Doob's Theorems*

By w. A. SMALL

The following definitions are based on concepts in references (2) and (4) .

Definition 1: Let W denote the set of all real valued functions, $w(t)$, of a real variable t.

Definition 2: Let t_1, \ldots, t_n be a finite set of t values. Let $-\infty \le a_i < b_i \le +\infty$, i = 1, ..., n. Then the set N of functions:

$$
N = \bigvee_{W(t) \in W} \left\{ a_i < w(t_i) < b_i, i = 1, \ldots, n \right\}
$$

is defined to be a *neighborhood* of any function in the set N.

It is noted that Wis itself a neighborhood of each function in W.

Definition 3: An *open set* in Wis any union of neighborhoods.

Definition 4: A Borel Field F of subsets of W is a class of subsets of W such that W ϵ F, and whenever A ϵ F and B ϵ F, then A-B ϵ F; and whenever each set of the sequence of sets A_1, \ldots, A_n, \ldots , is in F, then so is the union of the sequence.

It is noted that the intersection of the sets in the sequence is also in F.

Definition 5: A probability measure on subsets of function space is a non-negative, completely-additive, complete, set function $P(A)$ defined on a Borel Field of subsets of W, and such that $P(W) = 1$.

Definition 6: F_2 is the Borel field generated by the open sets.

Definition 7: F_0 is the Borel field generated by the neighborhoods.

Definition 8: Let P be any probability measure defined on a Borel field F of subsets of W ; then the three concepts W, F, P , together, are defined to be a *Borel Probability Field in Function Space,* abbreviated by bpf, and denoted by (W,F,P).

Definition 9: A bpf (W,F₀,P₀) is called a *Fundamental Borel Probability Field in Function Space,* appreviated fbpf.

^{*}The following note is based on part of a dissertation written under the direction of Professor Dorothy L. Bernstein of the University of Rochester.

1958] **PROBABILITY MEASURE** 333

Definition 10: If (W,F,P) is any bpf, and if $A \leq W$, then

 $P^*(A) = \inf P(E)$, $E \in F$, $E \geq A$, is defined to be the *outer* E

P measure of the set A.

Definition 11: Let (W, F, P) be a bpf, and let W' be a subset of W such that $P^*(W') = 1$. Let \widetilde{W}' denote the complement of W'. If A is any subset of W such that

 $A = EW' + H\widetilde{W'}$, where E and H belong to F, then define the set function $P'(A)$ by:

 $P'(A) = P(E)$. It can be shown that the class F' of all sets of the form $EW' + H\widetilde{W}'$, where E and H belong to F, is a Borel field which includes F, and that $P'(A)$ is a probability measure defined on a Borel field which includes F' , and such that P' reduces to P on the sets in F. Then the bpf (W,F',P') is called an *adjunction extension* of (W,F,P) and is said to be obtained from (W,F,P) by adjoining W' to F.

The following theorem is a formalization of statements made by J. L. Doob (2:p.23; 3:p.69) and is also based on a theorem of J. L. Doob's (1,p.109, theorem 1.1):

Theorem I: Let (W,F,P) be an arbitrary bpf. A necessary and sufficient condition that there exist an adjunction extension (W, F', P') of (W, F, P) obtained by adjoining W' to F is that $P^*(W') = 1$.

Proof: This theorem is proved by showing that P'(E), as defined in the statement of the theorem is a probability measure (unique up to sets of P measure zero) such that its domain of definition includes the Borel field $F' \geq F$, and such that P' reduces to P on F.

The complete additivity and other probability measure properties of the P' measure follow from the corresponding properties of P measure, and from the uniqueness of P' which itself follows from Doob's theorem (1,p.109, theorem 1.1). The fact that F' is a Borel field which includes F follows from the properties of F.

Now following Doob and S. Kakutani (2,p.25) define the set function P_2^* on the subsets of W as follows:

Definition 12: If G is any open set in W, and
$$
(W, F_0, P_0)
$$
 is any fbf, then let $P_2 \cdot (G) = \sup P_0(E_0), E_0 \in F_0, E_0 \leq G$. E_0

Definition 13: If A is any subset of W, then let (A) = inf $P_{2*}(G)$, G open, $G \geq A$ G

https://scholarworks.uni.edu/pias/vol65/iss1/48

334 IOWA ACADEMY OF SCIENCE [Vol. 65]

It can then be shown that P_2^* is an outer measure, and that the P^* , measurable sets include the Borel field F_2 .

Let P₂ denote the P₂^{*}</sup> measure of the sets in F₂. P₂^{measure is} called *Kakutani measure.*

It is sometimes desirable to know whether, when there exists an adjunction extension (W, F', P'_{0}) of (W, F_{0}, P_{0}) , the adjoined set W' belongs to F_2 (2,p.29); the reason for this being that it is desirable to use the bpf (W,F_2,P_2) in studying probabilities in function space. $(2,p.25,26,29)$. It is clear that an adjunction extension (W,F_2,P'_2) of (W, F_2, P_2) , if it exists, corresponding to the adjunction extension (W, F_0, P_0) of (W, F_0, P_0) would serve the same purpose, even though W' might not belong to F_2 . The condition for the existence of this extension is given in the following theorem, which is Theorem I applied to the bpf $(W, F₂, P₂)$.

Theorem II: Suppose (W, F', P') is an adjunction extension of a fbpf obtained by adjoining W' to F_0 . Then a necessary and sufficient condition that there exist a corresponding adjunction extension of (W, F_2, P_2) obtained by adjoining W' to F_2 is that P_2^* $(W') = 1$.

Proof: The proof is the same as in Theorem I, except that (W, F_2, P_2) is used instead of the arbitrary bpf.

Without going into the concept of a measurable Borel Probability Field in function space (2,p.26-29), it may be stated that whenever the condition of Theorem II is satisfied for a measurable adjunction extension of a fbpf, then the corresponding adjunction extension of (W, F_2, P_2) is also measurable. This follows from the fact that $F'_{0} \leq F'_{2}.$

Literature Cited

- 1. J. L. Doob. Stochastic Processes Depending on a Continuous Parameter: Transactions of the American Mathematical Society, Vol. 42, No. 1, 1937; pp. 107-140.
- 2. ------- Probability in Function Space: Bulletin of the American Mathematical Society, Vol. 53, Part 1, Jan. 1947; pp. 15-30.
- 3. ------ Stochastic Processes, John Wiley and Sons, Inc., New York, 1953.
- 4. A. N. Kolmogorov. Foundations of Probability, Second English Edition, Chelsea Publishing Co., New York, 1956.

DEPARTMENT OF MATHEMATICS GRINNELL COLLEGE GRINNELL, Iowa