[Proceedings of the Iowa Academy of Science](https://scholarworks.uni.edu/pias)

[Volume 66](https://scholarworks.uni.edu/pias/vol66) [Annual Issue](https://scholarworks.uni.edu/pias/vol66/iss1) Article 48

1959

An Application of Generalized Means

Sidney D. Nolte Iowa State University

[Let us know how access to this document benefits you](https://scholarworks.uni.edu/feedback_form.html)

Copyright ©1959 Iowa Academy of Science, Inc. Follow this and additional works at: [https://scholarworks.uni.edu/pias](https://scholarworks.uni.edu/pias?utm_source=scholarworks.uni.edu%2Fpias%2Fvol66%2Fiss1%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Nolte, Sidney D. (1959) "An Application of Generalized Means," Proceedings of the Iowa Academy of Science, 66(1), 357-361. Available at: [https://scholarworks.uni.edu/pias/vol66/iss1/48](https://scholarworks.uni.edu/pias/vol66/iss1/48?utm_source=scholarworks.uni.edu%2Fpias%2Fvol66%2Fiss1%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Research is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

[Offensive Materials Statement:](https://scholarworks.uni.edu/offensivematerials.html) Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

An Application of Generalized Means

By SIDNEY D. NOLTE

Abstract. The generalized mean $M(x,y)$ is defined to be $\Psi^{-1}[p\Psi(x) + \alpha \Psi(y)]$ where p, $\alpha > 0$, $p + \alpha = 1$ and $\Psi(x)$ is monotone and continuous.

This mean is applied to the second difference. $\Delta^2(f: x, h) = f(x+h) + (f-h)-2f(x)$ to form a generalized second difference

 $\Delta^{2}\Psi(f: x, h) = M\Psi[f(x+h), f(x-h)] - f(x)$...

A study is made of functions whose generalized second differences satisfy certain conditions. Maxima of classes of generalized quasi-smooth functions are examined.

It is the purpose of this note to apply the generalized mean to the study of second differences. A generalized second difference will be defined and certain properties of the second difference will be examined under this generalization.

MEANS DEFINED

A generalized mean is defined to be a single valued function $M(x,y)$ of two variables x and y ($\alpha \le x,y \le \beta$) if $M(x,y)$ satisfied the postulates:

- (i) Strictly monotonic: This means that if $x < x'$, then $M(x,y) < M(x',y)$ and likewise for y.
- (ii) Continuous:
- (iii) Bisymmetric: This means that

 $M[M(x_1,x_2), M(y_1,y_2)] = M[M(x_1,y_1), M(x_2,y_2)]$

Reflexive: $M(x,x) = x$

- (iv) Reflexive:
(v) Symmetric:
- $M(x,y) = M(y,x)$.

It follows immediately from postulates (i) and (iv) that any $M(x,y)$ will have the property that if $x < y$, then $x < M(x,y) < y$.

Aczel [1] has proved that postulates (i) through (v) are necessary and sufficient conditions for the existence of a strictly monotone, continuous function $\Psi(x)$ ($\alpha \leq x \leq \beta$) by which M(x,y) has the form

form
(1)
$$
M(x,y) = \Psi^{-1} \left[\frac{\Psi(x) + \Psi(y)}{2} \right]
$$

Further, a necessary and sufficient condition for the function $M(x,y)$ to satisfy postulates (i) through (iv) is that there exists a strictly monotone, continuous function $\Psi(x)$ ($\alpha \leq x \leq \beta$) and a pair of positive numbers p, q such that $p + q = 1$ and by

which
$$
M(x,y)
$$
 has the form
(2) $M(x,y) = \Psi^{-1}[p\Psi(x) + q\Psi(y)].$

The function $\Psi(x)$ is said to generate the mean M_{Ψ} (x, y). It is easy to see that $\Psi(x)$ is not unique. That is, if the mean M_{Ψ} is generated by the function $\Psi(x)$, it is also generated by the function $\Phi(x) = A\Psi(x) + B$ (A,B constants).

358 IOWA ACADEMY OF SCIENCE [Vol. 66]

The well known arithmetic, geometric and harmonic means are means satisfying (i) through (v) and can be generated by the functions x, $\log x$, $1/x$ respectively. Non-symmetric means are referred to as weighted means. The weighted arithmetic mean is written $M_x(x,y) = px + qy$, the weighted geometric mean is written M_{10gx} $(x,y) = x^py^q$ and the weighted harmonic mean is written $M_{1/x}(x,y) = -\frac{xy}{py + qx}$, where $p + q = 1$, and $p,q > 0$ in all these cases.

MEANS APPLIED TO THE SECOND DIFFERENCE

Consider the second difference of a function f

(3)
$$
\Delta^2(f;x,h) = f(x+h) + f(x-h) - 2f(x).
$$

Then

(4)
$$
\frac{\Delta^2(f;x,h)}{2} = \frac{f(x+h) - f(x-h)}{2} - f(x).
$$

This equation is an expression of the difference between $f(x)$ and the arithmetic mean of $f(x + h)$ and $f(x - h)$. This might suggest a generalized form of the second difference by use of other means.

Therefore the generalized second difference is defined by the expression

(5)
$$
\Delta_{\Psi}^{2}(f;x,h) = M_{\Psi}[f(x+h), f(x-h) - f(x)]
$$

where the domain of f is an interval $\lceil \alpha, \beta \rceil$ and the range of f is a subset of the domain of Ψ .

Let \wedge (α,β) , M be the class of all continuous functions $f(x)$ $(\alpha \leq x \leq \beta)$ which satisfy the condition

$$
f(x + h) + f(x - h) - 2f(x) \le 2Mh, M, h > 0.
$$

Such functions are called quasi-smooth. Timan [2] has shown that

(6) w*(h) = sup {w(f,h)} =sup ff/\ (a,(3)l\I ff/\ (a,f:l)M { sup lf(x,)-f(x2)n I x,-x" l<h *(*

possesses the property

(7)
$$
\omega^*(h) = M \frac{M}{\ln 2}(h \ln \frac{1}{h}) + O(h).
$$

Since $g(x) = f(x) + Ax + B$ is also quasi-smooth if $f(x)$ is, and since $f(x) \in \wedge (\alpha,\beta)M$ implies that $\frac{1}{M}f(x) \in \wedge (\alpha,\beta)$ 1, a normalization leads one to consider the class $\wedge^*(-1,1)$ where $\wedge^*(-1,1)$ is the class of functions \wedge (-1,1) which takes on the value zero at $+ 1$ and $- 1$.

https://scholarworks.uni.edu/pias/vol66/iss1/48

1959 **GENERALIZED MEANS** 359

In the course of the proof of the above relation, Timan shows that if

$$
K = \sup_{f \in \bigwedge^* (-1,1)} \left\{ \max_{-1 \le x \le 1} |f(x)| \right\},
$$

$$
K \le 4/3.
$$

then

This result can be generalized by considering the class $\wedge^*_{p}(-1,1)$ of all continuous $f(x)$ $(-1 \le x \le 1)$ such that if $(1) = f(-1) = 0$ and

(8)
$$
|pf(x+h) + qf(x-h) - f(x)| \leq h, \quad h > 0.
$$

\n*Theorem*: Let $K = \sup_{f \in \bigwedge_{p}^{k}} \left\{ \max |f(x)| \right\}$
\nThen $K \leq -\frac{4}{3} \left\{ \max [p,q] + 1/2 \right\} = \frac{4}{3} \left[1 + |p - \frac{1}{2}| \right]$
\nProof: Take $f(x) \in \bigwedge_{p}^{*} (-1,1)$ and let max $f(x) = f(x_0) = K - \epsilon$,
\n $-1 \leq x \leq 1$
\n $\epsilon > 0$. Let $x_1 \leq x_2 \leq ... \leq x_n$ be the points in [-1,1] at which
\n $f(x) = L, 0 < L < K - \epsilon$. Then there exist two points x_i x_{i+1}
\nsuch that $x_i \leq x_0 \leq x_{i+1}$. Now consider the function
\n $\Psi(x) = \frac{2}{x_{i+1}-x_i} \left\{ f\left[\frac{x_{i+1}-x_i}{2}x + \frac{x_{i+1}+x_i}{2}\right] - L \right\}$. Then it is
\neasy to show that $\Psi(1) = \Psi(-1) = 0$ and that for $h > 0$,
\n $|p\Psi(x+h) + q\Psi(x-h) - \Psi(x)| \leq h \left(-1 \leq x \leq 1\right)$. Therefore
\n $\Psi(x) \epsilon \wedge_{p}^{*} (-1,1)$. Hence max $\Psi(x) = \frac{2}{x_{i+1}-x_i}$
\n $\left\{ \max_{-1 \leq x \leq 1} f(x) - L \right\} = \frac{2}{x_{i+1}-x_i} \left\{ K - \epsilon - L \right\} \leq K.$

from which it follows that

(9)
$$
K \leqq \frac{2(L+\epsilon)}{2-(x_{1+1}-x_1)}
$$

Now let $x = 0$, $h = 1$, to obtain (10) $\vert \text{pf}(1) + \text{qf}(-1) - \text{f}(0) \vert \leq 1,$ set $x = \frac{1}{2}$, h = to obtain (11) $|\text{pf}(1) + \text{qf}(0) - \text{f}(\frac{1}{2})| \leq \frac{1}{2}$, and set $X = -\frac{1}{3}$, $h = \frac{1}{2}$ to obtain (12) $\left| \text{pf}(0) + \text{qf}(-1) - \text{f}(-\frac{1}{2}) \right| \leq 1/2$ Then from (10) , (11) and (12) it follows that (13) $| f(0) | \leq 1$, $| f(\frac{1}{2}) | \leq q+\frac{1}{2}$, $| f(-\frac{1}{2}) | \leq p+\frac{1}{2}$. Published by UNI ScholarWorks, 1959

360 IOWA ACADEMY OF SCIE>;CE [Vol. 66

Hence if in (15), $\mathbf{L} = \max [p,q] + 1/2$ then $x_{i+1} - x_i \leq 1/2$. $2\{\max[p,q] + \frac{1}{2} + \epsilon\}$ 4 Therefore K \leq $\frac{2}{2-1/2}$ $=\frac{1}{3}$ max $[p,q] + \frac{1}{2} + \epsilon$ and it follows that $K \leq \frac{4}{3}$ $\left\{ \max \left[p,q \right] + \frac{1}{2} \right\}$.

CONVEX FUNCTIONS

A function $f(x)$ is said to be convex if (14) $\frac{f(x_1) + f(x_2)}{f(x_1 + x_2)} \geq \frac{f(x_1 + x_2)}{f(x_2 + x_2)}$ 2 $=$ 2

for every x_1 , x_2 in the domain of f. This leads one to consider "generalized convex" functions. A generalized convex function will be defined as one which satisfies

(15)
$$
M_{\mathbf{w}}[f(x_1), f(x_2)] \geq f [M_{\mathbf{w}}(x_1, x_2)],
$$

for $x_1 > x_2, x_1, x_2$ [α, β].

In particular, if $\rm M_\Psi$ is the weighted arithmetic mean and if $\rm M_\Phi$ is the arithmetic mean, (15) becomes

(16)
$$
pf(x_1) + qf(x_2) \geq f(\frac{x_1, x_2}{2}), p, q > 0, p + q = 1, x_1 > x_2.
$$

The case where $p = q = \frac{1}{2}$ reduces to ordinary convex functions.

It is easy to see that equality holds in (14) if and only if $f(x)$ = $Ax + B$, and equality holds in (16) if $f(x) = C$. This leads to the question of whether there exists non-constant solutions to the functional equation

(17)
$$
pf(x) + qf(y) = f\left(\frac{x+y}{2}\right) = 0, p + q = 1, p, q > 0, x > y.
$$

Let $f(x)$ be a non-constant solution of (17) for $a \le x \le b$, and let x_0 (a,b). Then for a positive h sufficiently small, $x_0 - 2h$ and $X_0 + 2h$ are contained in the interval (a,b). Also, $g(x)$ = $f(x)$ - $f(x_0)$ is also a solution of (17). Hence

$$
\begin{array}{lll}pg(x_o+2h)+qg(x_o-2h) & = & 0\\pg(x_o+2h) & - & g(x_o+h) & = & 0\\ (18) & qg(x_o-2h) & - & g(x_o-h) = & 0\\ & pg(x_o+h)+qg(x_o-h) = & 0 \end{array}
$$

Since there exists a non-trivial solution of this system of equations, the determinant of the coefficients $\Delta = pq(q - p) = 0$. Therefore if (17) has a non-constant solution then $p = q = 1/2$. If $p \neq q$ then (17) has only a constant solution.

https://scholarworks.uni.edu/pias/vol66/iss1/48

1959] GENERALIZED MEANS 361

Now since there are no non-constant solutions of (17) in the case $p \neq q$, what types of functions are such that the inequality holds? This question is answered by the following theorem.

Theorem: If $f(x)$ is continuous for $\alpha \leq x \leq \beta$ and if 16 holds then $f(x)$ is monotone.

Proof: Let $a,b \, \big[(\alpha,\beta), a \big]$ b. Then subdivide the interval (a,b) by the points $a + h$, $a + 2h$, ..., $a + nh = b$ and let h be such that $a - h, b + h \quad [\alpha, \beta]$. Then

(19)
\n
$$
\begin{cases}\n\text{pf}(a + h) + \text{qf}(a - h) \geq \text{f}(a) \\
\text{pf}(a + 2h) + \text{qf}(a) \geq \text{f}(a + h) \\
\text{pf}(a + 3h) + \text{qf}(a + h) \geq \text{f}(a + 2h) \\
\cdot \\
\cdot \\
\text{pf}(b + \text{qf}(b - 2h) \geq \text{f}(b - h) \\
\text{pf}(b + h) + \text{qf}(b - h) \geq \text{f}(b).\n\end{cases}
$$

addition of these inequalities yields

 $qf(a-h) + qf(a) + pf(b) + pf(b+h) \ge f(a) + f(b)$ This inequality is equivalent to

 $q[f(a-h)-f(a)] + p[f(b+h)-f(b)] \ge (p-q) [f(a)-f(b)].$

By continuity of f, for any $\epsilon > 0$, h can be made sufficiently small so that $\epsilon \geq (p-q)$ [f(a)-f(b)]. Therefore

 $(p-q)$ $[f(a)-f(b)] \leq 0$ and $f(x)$ is monotone.

Corollary: If M_{Ψ} is any weighted mean generated by Ψ , $p \neq q$, and if f is such that

$$
M_{\Psi}[f(x+h), f(x-h)] \geqq f(x)
$$

then if $\Psi f(x)$ is continuous it will be a monotone function. *Proof:* Since $\Psi^{-1}[P\Psi f(x+h) + Q\Psi f(x-h)] \leq f(x)$ and since $\Psi(t)$ is monotone, we have $p\Psi(x + h) + q\Psi(x - h) \geq \Psi f(x)$ Application of the previous theorem yields the desired result.

Literature Cited

[1] J. Aczel, On Mean Values, Bul. Am. Math. Soc., vol. 54 (1948) pp. 392-410. [21 A. F. Timan, On Quasi-Smooth Functions, lzvestiia Matcmaticheskaia Akademiia Nauk, SSSR vol. 15 (1951) pp. 243-254.

DEPARTMENT OF MATHEMATICS IowA STATE UNIVERSITY AMES, IowA