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An Application of Generalized Means 
By SIDNEY D. NOLTE 

Abstract. The generalized mean M(x,y) is defined to be 
'1'-1 [p'l'(x) + a'l'(y)] where p, a>O, p + a = 1 and 'l'(x) is 
monotone and continuous. 
This mean is applied to the second difference. 
l:,_2(f: x, h) = f(x+h) + (f-h)-2f(x) 
to form a generalized second difference 
l:,.2-l'(f: x, h) = M'l'[f(x+h), f(x-h)] - f(x) .. 

A study is made of functions whose generalized second differ­
ences satisfy certain conditions. Maxima of classes of generalized 
quasi-smooth functions are examined. 

It is the purpose of this note to apply the generalized mean to the 
study of second differences. A generalized second difference will be 
defined and certain properties of the second difference will be ex­
amined under this generalization. 

MEANS DEFINED 

A generalized mean is defined to be a single valued function 
M(x,y) of two variables x and y (a< x,y < /3) if M(x,y) satisfied 
the postulates: 
(i) Strictly monotonic: This means that if x < x', then 

M(x,y) < M(x',y) and likewise for y. 
(ii) Continuous: 
(iii) Bisymmetric: This means that 

M[M(x1,x2), M(y1,y2)] = M[M(x1,Y1), M(x2,Y2)] 
(iv) Reflexive: M(x,x) = x 
(v) Symmetric: M(x,y) = M(y,x). 

It follows immediately from postulates (i) and (iv) that any 
M(x,y) will have the property that if x < y, then x < M(x,y) < y. 

Aczel [ 1] has proved that postulates ( i) through ( v) are neces­
sary and sufficient conditions for the existence of a strictly monotone, 
continuous function \fl ( x) (a < x < f3) by which M ( x,y) has the 
form 

(1) M(x,y) = \f!-1 [ '1t(x) t '1t(y) J 
Further, a necessary and sufficient condition for the function 

M(x,y) to satisfy postulates (i) through (iv) is that there exists 
a strictly monotone, continuous function '1t(x) (a < x < /3) 
and a pair of positive numbers p, q such that p + q = 1 and by 
which M (x,y) has the form 
(2) M(x,y = w-l[p\f!(x) + qw(y)]. 

The function w(x) is said to generate the mean M v (x, y). 
It is easy to see that \f!(x) is not unique. That is, if the mean M+ 
is generated by the function \f!(x), it is also generated by the func­
tion <I>(x) = A\f!(x) + B (A,B constants). 
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The well known arithmetic, geometric and harmonic means are 
means satisfying (i) through (v) and can be generated by the func­
tions x, log x, 1/x respectively. Non-symmetric means are referred 
to as weighted means. The weighted arithmetic mean is written 
Mx(x,y) = px + qy, the weighted geometric mean is written 
M 1ogx (x,y) = xPyq and the weighted harmonic mean is written 

M 1 /x ( x,y) = -PY '1-<P , where p + q = 1, and p,q > 0 in all these 

cases. 

~lEANS APPLIED TO THE SECOND DIFFERENCE 

Consider the second difference of a function f 

(3) 6~(f;x,h) = f(x + h) + f(x - h) - Zf(x). 

Then 

(4) il2(f}& = f(x + h) i f(x - h) _ f(x). 

This equation is an expression of the difference between f(x) and 
the arithmetic mean of f(x + h) and f(x - h). This might suggest 
a generalized form of the second difference by use of other means. 

Therefore the generalized second difference is defined by the ex­
pression 
(5) 6~(f;x,h) = M-v ff(x + h), f(x - h] - f(x) 

,y 

where the domain of f is an interval [a,/3] and the range of f is 
a subset of the domain of w. 

Let /\ (a,{J), l\I be the class of all continuous functions f(x) 
(a < x < /3) which satisfy the condition 

I f(x + h) + f(x - h) - 2f(x) I < 2Mh, M, h > 0. 

Such functions are called quasi-smooth. Timan [2] has shown that 

(6) w*(h) = sup {w(f,h)} =sup 
ff/\ (a,(3)l\I ff/\ (a,f:l)M 

{ sup lf(x,)-f(x2)n 
I x,-x" l<h ( 

possesses the property 

(7) w*(h) = M 1 
- lnZ · (h ln h) + O(h). 

Since g(x) = f(x) + Ax + B is also quasi-smooth if f(x) is, 

and since f(x)f /\ (a,fJ)M implies that ~ f(x)£ /\ (a,/3) 1, a nor­

malization leads one to consider the class /\ * (-1, 1) where f\ * (-1, 1) 
is the class of functions/\ ( -1, 1) which takes on the value zero at 
+ 1 and - 1. 
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In the course of the proof of the above relation, Timan shows 

that if 

K =- sup j max I f(x) I ), 
f { /\ * ( -1,1 ) l -1<x<1 r 

then 
K < 4/3. 

This result can be generalized by considering the class /\ * P (-1, 1 ) 

of all continuous f(x) (-1 < x < 1) such that if (1) = f(-1) = 0 

and 

(8) I pf(x + h) + qf(x - h) - f(x) I< h, h > 0. 

Theorem: Let K ==- ;i1p {' maxi f(x) I} 
fo\p(-1,1) -l<x<l 

Then K ::== -i-{ max[p,q] + 1/2} = ~-- [ 1 + IP - j I J 
Proof: Take f(x)c /\ ; (-1,1) and let max f(x) = f(x0 ) = K-<, 

-l<x<l 
< > 0. Let x1 < x2 < ... < x11 be the points in [-1,1] at which 

f(x) = L, 0 < L < K - <. Then there exits two points xi xi+l 

such that xi < Xo < xi 11 • Now consider the function 

w(x) = ~-2 - -~ f [ xi+i-:"i x +-J(i+i+xi ]- L lf .. Then it is 
X;+ 1-X; I,_ 2 2 

easy to show that '11(1) = '11(-1) = 0 and that for h > 0, 

I p>lt(x + h) + qw(x-h) - w(x) I< h (-1<x<1). Therefore 

l}l(x)</\~ (-1,1). Hence max w(x) = __ 2 __ 
-I::==x<l xi+i-X1 

{ m~x < f(x) - Lt = __ 2___{K - <-L) < K. 
-l=X= ( X;, 1-X; r 

from which it follows that 

2(L+<) (9) K < -·-- -·----
2 - (X1+1-Xi) 

i\ow let x = 0, h = 1, to obtain 

(10) I pf(l) + qf(-1) - f(O) I < 1, 

set x = 0, h =to obtain 
1 1 

c 11 l !Pr c 1 l + qt ( o l - f( 2 l I < 2 , 

and set X = - 1, h = -~ to obtain 

(12) I pf(O) + qf(-1) - f( - ~)I< 1/2 

Then from ( 10), ( 11) and ( 12) it follows that 

(13l I t(o) I <1.1 fO) l<q+!, 1£C-~)I <p+~. 
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Hence if in (15), L = max [p,q] + 112 then xi+i 
1 

Xi < 1/2. 

2{max[p,q] +z- + d 4 
Therefore K < 2 _ 112 - 3{ max 

1 ' 
[p,q] +z + E} 

and it follows that K < ~,{max [p,q] + ~ } . 

CONVEX FUNCTIONS 

A function f ( x) is said to be convex if 

(1 4) _!ix1) t_~(x2) > f(x1 +_2'zL 
2 2 

for every xu x2 in the domain of f. This leads one to consider 
"generalized convex" functions. A generalized convex function 
will be defined as one which satisfies 
( 15) M \{I [f ( X1 ), f ( xJ ] > f [ M iI> (Xu X2) ], 

for X1 > X2, Xv X2 [ a,/3 J. 
€ 

In particular, if M \fl is the weighted arithmetic mean and if M 
iI> 

is the arithmetic mean, ( 15) becomes 

(16) pf(x,) +qf(x2 ) >f(~1t2 ),p,q>O,p+q=l,x1 >x:i. 

The case where p = q = ~ reduces to ordinary convex functions. 

It is easy to see that equality holds in (14) if and only if f(x) = 
Ax + B, and equality holds in ( 16) if f ( x) = C. This leads to the 
question of whether there exists non-constant solutions to the func­
tional equation 

(17) pf(x) + qf(y) = f ( x; y)= O,p + q = 1, p,q > O, x > y. 

Let f(x) be a non-constant solution of (17) for a < x < b, 
and let x ( a,b). Then for a positive h sufficiently small, x0 - 2h 

0€ 

and Xo + 2h are contained in the interval (a,b). Also, g(x) = 
f(x) - f(x 0 ) is also a solution of (17). Hence 

pg(x0 +2h) + qg(x0 -2h) =0 
pg(x0 +2h) - g(x0 +h) =0 

g(x 0 -h) = 0 
pg(xo+h) + qg(xu-·h) = 0 

(18; qg(x.,---2h) 

Since there exists a non-trivial solution of this system of equations, 
the determinant of the coefficients 6. = pq ( q - p) = 0. Therefore 
if (17) has a non-constant solution then p = q = 1/2. If p =I= q 
then ( 17) has only a constant solution. 
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Now since there are no non-constant solutions of ( 17) in the case 
p =;/= q, what types of functions are such that the inequality holds? 

This question is answered by the following theorem. 
Theorem: If f(x) is continuous for a< x < f3 and if 16 holds 
then f ( x) is monotone. 
Proof: Let a,b (a,/3), a < b. Then subdivide the interval (a,b) by 

€ 

the points a+ h, a+ 2h, ... , a+ nh = band let h be such that 
a - h, b + h [ a,/3]. Then 

€ 

pf(a + h) + qf(a - h) > f(a) 
pf(a + 2h) + qf(a) > f(a + h) 
pf(a + 3h) + qf(a + h) > f(a + 2h) 

(19) 

pf(b + qf(b - 2h) 
pf(b + h) + qf(b 

addition of these inequalities yields 

> f(b - h) 
h) > f(b). 

qf(a-h) + qf(a) + pf(b) + pf(b+h) > f(a) + f(b) 

This inequality is equivalent to 
q [ f (a-h)-f (a)] +P[ f (b+h)-f (b)] >(p-q) [f (a)-f (b)]. 

By continuity of f, for any f > 0, h can be made sufficiently small 
so that f > (p-q) lf(a)-f(b) ]. Therefore 
(p-q) [f(a)-f(b)] < 0 and f(x) is monotone. 
Corollary: If M,1< is any weighted mean generated by >¥, p =;/= q, 

and if f is such that 
M,y [f(x + h), f(x - h)] :::::-=: f(x) 

then if '1'f(x) is continuous it will be a monotone function. 
Proof: Since >11-1 [P>¥f(x + h) + q\[lf(x - h)] < f(x) and since 
w(t) is monotone, we have p'1'f(x + h) + q'J!f(x - h) > '1'f(x) 

Application of the previous theorem yields the desired result. 
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