A Simple Machines Lab for Seventh Grade Students

Peter H. Sweedy
Davenport Community Schools

Follow this and additional works at: https://scholarworks.uni.edu/istj

Part of the Science and Mathematics Education Commons

Let us know how access to this document benefits you

Copyright © Copyright 1972 by the Iowa Academy of Science

Recommended Citation
Available at: https://scholarworks.uni.edu/istj/vol9/iss2/13

This Article is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.
Having taught physical science for two years at the high school level, my new assignment to teach seventh grade science was met with mixed emotions. I had heard that junior high students were very energetic (mostly for mischief) and were very limited in learning ability, due to a low reading level and a lack of mathematical skills. I know I had also wondered, like many of you in high school and college teaching, just why did high school age students have such poor concepts of motion, energy, light, sound and graph interpretation and use. Wasn’t it due in part to poor teaching of these concepts at the elementary and junior high level.

After teaching junior high science now for two years, I have learned that the misgivings I had are true to varying degrees, and it is only by realizing the various limitations and strong points of these students that one can effectively teach the concepts and skills required. For instance, I have found that these students:

1) Tune out to lectures of any type over 10 minutes in length,
2) Rarely do reading assignments of more than two pages,
3) Resent having to just sit during class time,
4) Feel that math and science are alien to each other,
5) Respond quite favorably to success—no matter how minor it may seem to the instructor,
6) Actually bring their texts to class—I give open book quizzes,
7) Are relatively poor readers but may be encouraged to read filmstrips,
8) Are fairly good artists when required to draw,
9) Need visual aids to help grasp verbal and conceptual ideas,
10) Lack experience and discipline in a lab situation,
11) Are highly motivated by things made interesting to them.

I picked out one example which illustrates that verbal explanations are not enough when presenting new words and ideas. One student understood the distillation apparatus quite well and listened carefully, but my failure to spell all the new terms is quite evident. (Figure 1). Note that the bunsen
burner to him was "buns and burner." Who knows if this error would have ever been corrected?

The rule of thumb I now generally use with my junior high classes in science is that if I can demonstrate a concept we happen to be studying, with fairly inexpensive equipment, I scrounge around for enough equipment to enable the entire class to do it themselves, working in groups of two or three.

I would like to share one such lab with you. The first year I taught simple machines and mechanical advantage, I did a lot of demonstrations which involved most of the students, but only three or four at a time. Trying to arrange a rotating system resulted in many students coming in after school, which, in turn, resulted in establishing another rotating system to enable all those interested to have a turn. This last year I divided each class of approximately 30 students into lab groups of two or three and assigned each group a #1, #2 or #3. Group #1 worked on levers the first day, pulleys the second day and inclined planes the third day. Group #2 started on pulleys the first
day, inclined planes the second day and levers the third day. And yes, Group
#3 started on inclined planes the first day, levers the second day and pulleys
the third day. In this way I only needed five complete set ups of any given
area. A fourth day was taken to finish up any parts of any of the areas not
finished.

The features of this lab were:
1) Plenty of time to have both failures and eventual successes,
2) Periodic check points,
3) Periodic success reinforcements,
4) Opportunity to physically feel mechanical advantage,
5) Requirement to make two graphs,
6) Accessibilty to a set of 10 filmstrips on simple machines,
7) A fourth “free day” to explore new ideas.

These are sections of the lab done:

The following are your lab sheets on simple machines. Each lab partner is
to fill in his or her own lab sheets. We will be taking four days for this lab, so
take your time.

Levers—1st, 2nd, 3rd

Check list of materials

......One meter stick
......One fulcrum
......One support
......Two four-inch strings
......One unknown mass
 (approximately equal to 200 grams)
......One spring balance

If the mass of your weight is unknown, use the spring balance to balance its weight.
Mass of unknown weightgrams

1) Balance the meter stick
2) Tie loops in the two pieces of strings
3) Hang the weight from the 100 cm. mark
4) Balance this weight by using the spring balance at the following positions:
 0 cm. spring balance reading
 25 cm. spring balance reading
 40 cm. spring balance reading
5) Now put the spring balance at the 100 cm. mark and put the weight at the
 following marks:
 0 cm. spring balance reading
 25 cm. spring balance reading
 40 cm. spring balance reading
True or false

When the spring balance and the weight are the same distance from the fulcrum, the reading on the spring balance should be the same as the mass of the weight.

When the weight is twice as far from the fulcrum as the spring balance, the reading of the spring balance is about one half the mass of the unknown weight.

It is easier to balance the weight when it is closer to the fulcrum.

The weight always moves the same way as the spring balance is pulled.

State here what you learned about a first class lever

Checked by instructor

The students were also asked to construct a second and a third class lever and answer similar questions as those asked about the first class lever.

Pulley Lab—Four Different Set Ups

Check list

One spring balance
One ring stand
One C-clamp
One ring stand clamp
One two-foot length of string
One unknown weight (at least 500 gms.)
One single pulley
Two double pulleys
One triple pulley
One block and tackle

Spring balance mass of weight

SET UP ONE

Spring balance reading to hold weight gms.

SET UP TWO

Spring balance reading to hold weight gms.

In which set up is it easier to lift the weight? 1 2
In which set up does the weight move less distance than the spring balance? 1 2

Checked by instructor

In this pulley lab a set up trying the two double pulleys and a block and tackle set up was done.
Required Graphs for the Inclined Plane Lab

Vertical Height Raised (cm.)

........... Checked by instructor

Fig. 2
Inclined Plane Lab

Check list
..... One spring balance
..... One big weight (provided)
..... One inclined plane
..... One meter stick
..... One protractor
..... One sheet of graph paper
..... Patience
In this lab you are going to pull the weight up different inclines. Each time you pull the weight, pull it through the same distance.

Length of inclined plane cm.
Mass of weight used gms

<table>
<thead>
<tr>
<th>Protractor reading</th>
<th>Vertical height raised</th>
<th>Spring balance reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

............. Checked by instructor

From this data the students were required to make two graphs. (Figure 2). Most students noticed the similarity of both graphs.

In summary, the lab was rather hectic to run because one instructor had to check 30 students and their work. But I'm sure the students enjoyed this particular lab, as well as did their instructor.

NEW STUDENT MAGAZINE

Orbit

National Wildlife Federation is charting a new course—with ORBIT! This unique weekly classroom magazine on man and his environment is specially designed for middle and junior high school students. ORBIT forges a new path. It shows how to pull earth back onto its proper ecological orbit, how to provide for the needs of all living things.

ORBIT has been prepared in response to thousands of requests from teachers and students alike. Everywhere student interest in the environment is surging. Young people want to know about air and water pollution, overcrowding in the cities, mercury poisoning and pesticide hazards. They’re vitally interested in ocean and space exploration, the beauties of nature and the death of wilderness areas.

ORBIT will be published weekly during the school year. Each issue will have 16 pages. National Wildlife Federation, 1412 Sixteenth Street, N. W., Washington, D.C.

Career Aids

According to syndicated columnist Sylvia Porter, by 1980 about 1,200,000 workers will be needed in environmental careers—approximately twice the number for 1970. Details on some newly developing fields are described in two books suggested by Miss Porter—Opportunity in Environmental Careers (Odom Fanning, Universal Publishing and Distributing, $5.95) and Career Opportunities: Ecology, Conservation and Environmental Control (J. G. Ferguson Publishing Co., Chicago, $6.95).