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Thus 

f(r,u) = 1 
2rri 

f°+i 00 
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j c-1 oo 
(cos u)ds = (1 + 2r cos u + r2 )-¥.z; 

u:::;;; V, 0 < r < oo. 
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GEORGE SEIFERT2 

Abstract. In some work with systems of ordinary differential 
equations, a certain compact convex subset of a Banach space 
of vector-valued functions continuous on the real closed in
terval [O,l] was introduced [l]. The topology in this Banach 
space is induced by the supremum norm, while the norm 
used in the n-dimensional vector space of function values is 
arbitrary. It is observed in this note that all functions of this 
class have the same norm, a linear function on the set [O,l]. 
However, the nature of this subset depends rather markedly 
on the type of vector norm used. 

A theorem due to J. Schauder [3] says, in effect, that a com
pact convex subset of a Banach space has the fixed point prop
erty; i.e., a continuous function mapping the subset into itself 
necessarily has a fixed point. In applications of this result to 
certain existence problems in the theory of differential equations, 
we often deal with a Banach space of continuous vector func
tions of a real variable, and it then becomes necessary to intro
duce compact convex subsets of this space. In this note we con
sider a certain type of subset of such a space which has arisen 
in some work of the author and D. D. James [1]. It is observed 
in particular that these convex compact subsets depend rather 
considerably on the norm used in the n-dimensional vector space 
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Hlfi2] A CLASS OF VECTOR FUNCTIONS 443 

containing the ranges of the functions making up the Banach 
space. 

Notation: 
( i) i R11 , I I r is a normed linear n-space over the complex 

field where the norm of xeR11 is denoted by 14 
(ii) C [0,1] is the set of continuous functions on the closed 

real interval [0,1] to R11 • 

(iii) If faC [0,1], we define Jlfll = sup Jf(u)I. 
[0,1] 

(iv) S°' is the subset of C[0,1] consisting of functions f with 
continuous derivative f' on [0,1] and such that 

f(O) = 0, f(l) =a. lf'(u)J :( b, where b = Jal; 
here if f = (£1, ... Jn) then f' = (£'1, .. ., f1

11 ). 

Remark 1. i c [0,1]' ! I 11 r is a Banach space over the complex 
field. 

Remark 2. S" is convex and conditionally compact; i.e., the 
closure &i of Sa is convex and compact. 

Conditional compactness follows directly from Ascoli' s lemma 
(cf. [2], p. 5) since Sa is an equicontinuous set of functions uni
formly bounded on [0,1]. Convexity follows easily; we omit the 
details. 

Remark 3. If faSa, then If ( u) I = bu (cf. [l]) and it follows 
easily that If( u) I' = If' ( u) I = b on [0,1]. Thus Sa consists of 
functions with linear norm, and in (iv), the inequality Jf' ( u) I:( 
b can in fact be replaced by If' ( u) J = b. On the other hand, not 
all functions f with linear norm on [0,1] and f ( 1) = a are 
in Sa, as the following example in R 2 shows. If x = ( xi,x2 ), 

take lxl =max (lx1I, Jx2 J), f(u) = (u,u-u3 ). Then a= (1,0), 
b = 1, f'(u) = (1, l-3u2 ), and since lf'(l)I = 2, f is not an 
element of Sa. However since u3 :( u for ue[O,l] I, f ( )uJ = u. 

Renwrk 4. Sa clearly contains the linear vector function ua, 
but does not in general consist of only this function, as is always 
the case if n = 1 and R1 is real. For consider the case in R2 with 
norm as in the preceding example, where now (f(u) = (u, u
u2 ). Since If' ( u) I = max( 1, ll - 2ul) = 1 for ue [0,1] it follows 
that faSa. But f is obviously not linear. Another example in R2 

using the norm lxl = lx1I + lx2J is due to D. D. James [l]. 
I. D. D. James and G. Seifert, Periodic Integral Surfaces for Periodic 
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