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A statistical, spatial, and hydrologic comparison of gauge-based and
MPE-based rainfall measurements

RICHARD BERNATZ

Department of Mathematics & Environmental Studies Program

Luther College, 700 College Drive, Decorah, Iowa 52101

Gauge-based and multi-sensor precipitation estimation (MPE) data are compared on hourly, daily, monthly and event time scales at site
locations over a 12-year period. Gauge data is collected at 16 sites within a 950 km2 portion of the Upper Iowa River in northeast Iowa.
Average relative MPE bias is positive for all but the event time scale, and has a magnitude of less than 0.10 for all scales. Gauge and MPE
average correlation coefficients range from 0.73 on the hourly scale to 0.92 on the event and monthly scales. The MPE relative bias
standard deviation decreases from 1.70 mm on the hourly scale to 0.27 mm on the monthly scale. Decomposition of hourly bias reveals
that the false positive portion is the most significant component. Seventy percent of MPE accumulation have a relative bias of 0.5 or less
when hourly accumulations are 7 mm or greater. Pearson product-moment coefficient analysis reveals strong similarities in spatial
correlations as a function of site separation. Rainfall time series for the basin are constructed from the two data sources and used as input
to a Blocked Topmodel rainfall runoff scheme to provide another means of comparison on a basin-wide spatial scale. Five goodness-of-fit
measures are used for quantifying the viability of simulated flows. No statistically significant difference in annual means using the
difference sources is found for any of the measures.

INTRODUCTION

Accurate measurement of rainfall accumulation (depth) and
intensity (accumulation per time interval) is important for purposes
such as climate analysis and hydrological forecasting. Two means of
providing estimates for these quantities are a network of tipping
bucket (TB) rain gauges and multisensor precipitation estimation
(MPE) using radar, satellite and gauge data. Gauge-based data
generally are considered to be an accurate measurement of ground
surface rain at specific sites (Villarini and Krajewski 2008). MPE-
based estimates for rainfall intensities and accumulation are
calculated for relatively small surface regions called ‘‘pixels.’’ MPE-
related measurement provides near real-time and more
comprehensive spatial information lacking in gauge network data
(Wood et al. 2000). This paper compares these two methods of
rainfall estimation in three ways. First, comparisons of rainfall
statistics (mean accumulation, bias, relative bias and others) on
various time scales is done using MPE data and gauge data recorded
at 16 sites within the Upper Iowa River basin in northeast Iowa.
Next, spatial characteristics of the two measurements are analyzed
using the Pearson product-moment (PPM) coefficient. Finally, the
validity of rainfall runoff simulations using the two data sources as
input to a hydrologic model will be compared using six goodness-of-
fit measures based on simulated river discharge versus observed river
discharge.

Cole and Moore (2008) derived three gridded rainfall estimators
from gauge and MPE data within the years 2002 to 2004: gauge-only
data (networks of eight or nine telemetry tipping-bucket rain gauges)
using a multi-quadratic interpolation scheme, gauge-adjusted radar,
and unadjusted radar data. These estimators were assessed from a

rainfall perspective as well as input to hydrological models for the
Darwen (136 km2) and Kent (212 km2) river catchments.
Hydrological models performed best when rain gauge-only data
were used as input. However, this is attributed to model calibration
using gauge-only data. The model simulations give very compelling
evidence supporting the need for frequent and spatially varying
gauge-adjustment of radar rainfall.

MPE (4 3 4 km2 pixels) data were compared to gauge data
collected on a dense rain gauge network in south Louisiana for years
2004 to 2006 (Habib, et al. 2009). Two MPE pixels had four gauges
situated within them, and three had a single rain gauge. Comparisons
using MPE pixels with multiple gauges show bias, defined by MPE
accumulation-gauge accumulation, on an event-scale basis reaches up
to 625% of total event depth for half of the events, and exceeds
50% for 10% of the events. Negative bias occurred on 65% of the
events. Conditionally, MPE overestimates rainfall rates by 60-90%
for rates lower than 0.5 mm h�1, and underestimate larger rates by as
much as 20% for rates greater than 10 mm h�1. A single gauge within
an MPE pixel gives an artificially high MPE estimation error by as
much as 120-180%.

Data from 49 gauges over the 135 km2 Brue catchment in
Somerset, England for September 1993 through June 1996 were used
by Wood et al. (2000) to examine the accuracy of rainfall data
recorded by the gauges against estimates derived from radar. Some
radar pixels had a ‘‘super-dense’’ eight-gauge distribution within the 2
km2 pixel. At rainfall intensities of 16 mm h�1, a single gauge
estimate for rainfall within a 2 km square, and over the catchment,
has a standard error of 33% and 65% respectively. Radar data for the
same resolutions give corresponding errors of 50% and 55%.

Price et al. (2011) compared the accuracy of daily streamflow
simulation based on daily rain gauge and higher-resolution MPE data
on two sub-basins of the Neuse River in North Carolina with
different drainage scales (21 km2 and 203 km2) over an eight-year
simulation period (1 January 2002 to 31 August 2010). MPE flowbernatzr@luther.edu
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simulations produce R2 values of 0.64 and 0.54 for the larger and
smaller sub-basins, respectively. Gauge-data simulations resulted in
R2 scores of 0.19 for both sub-basins, thereby indicating that MPE
data generate more accurate stream flows than gauge data. They
attribute the discrepancy to the improved spatial resolution of MPE
data, and not to the error associated with rain gauge data.

A study on the Severn Uplands (UK), with an area of 2,065 km2

(Biggs and Atkinson 2011) lead researchers to conclude that six rain
gauges could be used to predict flows with similar accuracy to radar
data during an extreme hydrological event. The study covered the
intense rainfall and large river flows over the time period of
November 2006 and December 2006.

Although this study is similar in nature to studies cited above, it is
unique in that the 12-year length (years 2004 through 2015) of the
gauge network data is longer by four years than the study period of
Price et al. (2011), and longer by eight years or more than those used
in the remaining studies referenced above. The longer interval
provides the ability to compare the rainfall measures for a range of
wet and dry seasons. The longer time frame significantly increases the
sample size, allowing for greater statistical validity. For example, the
hourly scale sample size in this study is 48,071. The corresponding
sample size for Habib et al (2009) is 3,645. In terms of hydrologic
input, the longer time interval includes four significant flood events
of the Upper Iowa River within the study region. Consequently,
hydrological efficacy of the two measures for simulating river
discharge may be compared using multiple flood events.

STUDY REGION

The Upper Iowa River (UIR) originates in southeastern
Minnesota, and the majority of its 250-km path to the Mississippi
River winds through northeast Iowa, entering the Mississippi River
on the Iowa side of the Iowa–Minnesota border. Paleozoic-age
bedrock units consisting of carbonates (limestones and dolomites),
sandstones, and shales make up the lower depths of the UIR basin.
The sandstone and carbonate strata typically act as aquifers, and the
shales as aquitards. Overlying the bedrock is a variable thickness of
unconsolidated materials, which are typically thicker in the western
part of the basin and thinner to the east (Wolter, et al. 2011). Soil in
the western two-thirds of the basin upstream from Decorah is
classified as silty and loamy mantled firm till plain, characterized by
gently sloping to very steep dissected till plain. Land use is primarily
crop and grazing land on ridge tops and valley bottoms, with a mix
of dairy, beef and cash grain agricultural enterprises. Deciduous
forests populate the side slopes. The remaining portion of the
Decorah upstream basin is identified as driftless loess hill and is
further characterized by highly dissected hills and valleys. It is
comprised by well- to moderately well-drained silty soils over
bedrock residuum.

The United States Geological Survey (USGS) maintains volume
flow gauging stations near Bluffton, Iowa (station #05387440) and
Decorah, Iowa (station #05387500) where discharge and gauge height
are recorded on a 15-minute interval basis. The basin upstream from
Bluffton has a drainage area of 950 km2. The annual average discharge
ranges from 3.33 m3 s�1 to 19.23 m3 s�1. The maximum peak flow for
the 13-year recording period is 470 m3 s�1. The basin upstream from
the Decorah station has a drainage area of 1323 km2. The annual
average discharge ranges from 2.73 m3 s�1 to 24.68 m3 s�1. The
maximum peak flow over the 64-year recording period is 965.6 m3 s�1.

Rain Gauge Data

A recording rain gauge network for the UIR basin upstream from
Decorah was set up for May through October 2004, with six sites

distributed on the perimeter of the basin (gauges 1 to 6 as shown in
Fig. 1). As many as nine additional gauges were placed at various sites
in subsequent years. Sixteen different sites, as shown in Fig. 1, have
data for at least six seasons (May through October).

Rain gauges used to collect data are the Onset RG2 data tipping
bucket (TB) logging gauges that record the time, within 0.5 second,
that the bucket tips. Each tip represents 0.254 mm of precipitation.
The system has a calibration accuracy of 61.0% (up to 25.4 mm per
hour), a time accuracy of 6100 ppm at 208 C, and a capacity of
8,000 tips (2032 mm). Gauges were set up annually in mid-May and
removed from the sites at the end of October. Gauges were calibrated
annually, either in the field or during the launching process prior to
returning them to the field.

The magnitude of the rain gauge errors is highly dependent on the
local rainfall intensity and the timescale. At moderate rainfall
intensities of 10 mm h�1, gauges have been determined to have
relative standard errors of 6.4% for the 5-minute time scale and 2.3%
for 15-minute timescale (Habib et al. 2001). Ciach (2003) determined
relative standard errors of 4.9% and 2.9% respectively for similar
conditions.

Using gauge data to give areal rainfall leads to spatial error.
Villarini and Krajewski (2008) show that the standard deviation of
the spatial sampling error decreases with increasing rainfall intensity
and accumulation time, and increases with increasing pixel size.

Single-gauged sites are more susceptible to operational problems
(mechanical or electrical issues) and clogging as opposed to those
with a dual-gauge setup (Krajewski et al. 2003, Steiner et al. 1999).
Because of the known irregularities in single-gauge site collection,
gauge data will not be considered the ‘‘true’’ ground data in this
study. Rather, the study endeavors to explore the relative differences
in rainfall estimates of the two sources, as well as their relative
efficacies as hydrologic model inputs—especially associated with near-
flooding or flooding events in the upper reaches of the Upper Iowa
River.

MPE Data

Radar-based data used in this study is hourly multisensor
precipitation estimation (MPE) produced by the 12 National
Weather Service (NWS) River Forecast Centers (RFCs) distributed
over the continental United States. The essential component of
radar-based rainfall estimates is the Next Generation Weather Radar
(NEXRAD) system of 160 WSR-88D (Weather Surveillance Radar–
1988 Doppler) radars. NEXRAD rainfall products have four stages (I
to IV) depending on the level of preprocessing, calibration, and
quality control (Fulton 2002, Jayakrishnan et al. 2004, Xie et al.
2005). MPE combines rain gauge data, NEXRAD rainfall estimates,
and Geostationary Operational Environmental Satellite (GOES)
products. (Note: The rain gauge data used in this study is
independent of that used in the MPE product.) The MPE data are
mapped to a 4 km 3 4 km polar stereographic projection grid, also
known as the Hydrologic Rainfall Analysis Project (HRAP) grid, and
mosaicked to produce a product known as Stage IV rainfall analysis.
The Iowa Flood Center (IFC) transforms these data to a 2.0 km3 2.0
km pixel grid for input to its hydrologic modeling application. The
resulting grid, over-lain on the study region, is shown in Fig. 1.

Sources of uncertainty for radar-based rainfall estimates include
the effect of different radar beam heights due to the difference in
distances between the radar location and various points within the
region monitored by the radar. Another error source is resolution loss
due to beam spread at greater distances from the radar site. Other
sources of uncertainty include anomalous propagation of the radar
electromagnetic wave due to the deviation of the vertical temperature
profile from an assumed distribution, as one example. The particular
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Z-R relationship used to calculate the rainfall rate R as a function of
the reflectivity Z may be an issue (Austin 1987). For example, right-
band contamination from an enhanced radar return caused by
melting snow can lead to errors in precipitation intensity of up to a
factor of five (Illingworth and Thompson 2011).

METHODS

The ‘‘raw’’ MPE data used in this study estimates rainfall
accumulations for each MPE cell for each hour interval (01 to 24)
beginning on the integer hour. Therefore, the rain gauge time series
data are aggregated to the same hourly intervals. Data from all sites
are lumped under the reasonable assumption that all sites are within
the same climatological region. The MPE pixel corresponding to
each of the 16 gauge sites is determined based on the gauge
coordinates and the MPE pixel vertex coordinates. If a gauge site was
close to the border of two or more MPE pixels, the corresponding
MPE estimate is determined by averaging the corresponding pixel
accumulations. Hyetographs for each site and year were used to
identify times for which the gauge at the site may have become
clogged, and the corresponding data segments in the time series are
removed from the site’s time series.

Statistical Analysis

A comparative statistical analysis is developed using samples of
paired gauge-MPE accumulations on various time scales. Each pair in
the sample has a non-zero accumulation for at least one of the
measures. Site-based time scales include hourly, daily, monthly, and
site event. In this study, a site event is defined by a continuous rainy
period wherein rainfall is interrupted by no more than a 6-hour
interval and the accumulation total is at least 5 mm at a given site.
Hourly and event time-scales are relevant for purposes such as
hydrologic modeling. Daily and monthly time-scales are more
relevant for climatological purposes.

Statistical measures applied on the various time scales include:

Bias : R̄MPE � R̄G ð1aÞ

Relative bias :
R̄MPE � R̄G

R̄G
ð1bÞ

Standard deviation of difference : rðRMPE�RG Þ ð1cÞ

Relative standard deviation of difference :
rðRMPE�RG Þ

R̄G
ð1dÞ

Pearson’s correlation coefficient :
ðRMPE � R̄MPE ÞðRG � R̄G Þ

rMPE rG
ð1eÞ

RMPE is the MPE rainfall accumulation per time scale and RG is
the corresponding rain gauge value. Expressions with the over-bar
represent sample means, and r represents the sample standard
deviation.

One reliability measure of MPE data is the frequency of zero MPE
accumulation for a non-zero gauge accumulation on a given time
scale. The relative frequency of such occurrences is defined to be the
probability of false zeros (PFZ). A similar probability of false
positives (PFP) is defined for cases in which MPE accumulations are
non-zero and gauge accumulations are zero. These probabilities are
conditioned by either the magnitude of the non-zero accumulation
or the magnitude of non-zero rainfall intensity.

Spatial Analysis

Comparison of spatial characteristic of the two measurements is
made using the Pearson product-moment (PPM) coefficient r, shown
in Equation (2). The coefficient is a popular estimator (Gebremichael
and Krajewski 2004) of the linear dependence between rainfall R at
two locations (x1, y1) and (x2, y2) separated by the Euclidean distance
h.

rðhÞ ¼ Rðx1; y1ÞRðx2; y2Þ � Rðx1; y1ÞRðx2; y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðx1; y1Þ2 � Rðx1; y1Þ2
� �

Rðx2; y2Þ2 � Rðx2; y2Þ2
� �q ð2Þ

Terms with angle braces represent the mean of the quantity, so the
coefficient is the covariance of the two quantities divided by the
product of their standard deviations. For non-negative values such as
rainfall accumulation, a coefficient value of 1.0 implies a perfect
correlation and 0.0 implies no correlation.

Hydrologic Model Input Analysis

The viability of MPE-measured rainfall relative to gauge data is
analyzed by comparing the simulated discharge of the Upper Iowa
River using rainfall inputs derived from the two data sources.
Simulated discharges in cubic meters per second (m3s�1) are
calculated for the Bluffton and Decorah sites using the block-wise
Topmodel framework (Takeuchi et al. 1999). In the block-wise
version of Topmodel, the Upper Iowa River basin is partitioned into
blocks consisting of either a sub-basin or a river corridor entity.
Hourly rainfall accumulations are used to develop rainfall time series
for each Topmodel block for each year from 2004 to 2015. Digital
elevation model (DEM) pixels of 30 m3 30 m are assigned to one of
the 31 Topmodel blocks. Point-wise gauge accumulations are scaled
up to the DEM pixels using the nearest neighbors modified
Shepard’s (Shepard 1968) weighting scheme. For MPE data, DEM
pixels, or portions thereof, are assigned to a MPE pixel. This
assignment establishes the hourly rainfall accumulation as well as the
block to which the corresponding portion of the MPE pixel is
assigned. Hourly DEM pixel accumulations are averaged to derive an
hourly rainfall time series for each computational block for each
rainfall measure.

Various goodness-of-fit measures for quantifying the accuracy of
simulated streamflow relative to the observed discharge are described
below. Quantities with subscript ‘‘p’’ correspond to predicted or
simulated discharges. Those with subscript ‘‘o’’ represent quantities
corresponding to observed discharges.

� The Gupta-Kling efficiency (GKE) (Gupta et al. 2009) is given by
1-ED, where ED is the Euclidean distance between the triple (r,
a, b) and the ‘‘ideal’’ location (1, 1, 1). In the triple, r is the linear
correlation coefficient between the simulated and observed
discharges, a is the ratio of the standard deviation of the
simulated values rp and the standard deviation of the observed
values, ro, and b is the ratio of the mean of the simulated values
lp and the mean of the observed values lo. The nature of this
measure results in the tendency for underestimation of simulated
flow peaks (Gupta et al. 2009).
� The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970) is
1 minus the ratio of the mean square error (MSE) and the
standard deviation of the observations, ro. It has a range of
values of (-‘, 1]. Values greater than or equal to 0.9 are deemed
to be ‘‘good,’’ and values greater than or equal to 0.8 deemed to
be ‘‘satisfactory’’ (Dawson et al. 2007). Analysis provided by
Gupta et al. (2009) shows this measure has three distinctive
components representing the correlation among the simulated
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and observed flow, the ‘‘normalized’’ bias, and the relative
variability of the simulated values versus the observed values.
� The index of agreement (IoA) measure is the ratio of the mean
square error and the potential error (Willmott et al. 1985). Its
sensitivity to extreme values is one of its strengths (Legates and
McCabe Jr. 1999). Values range from 0 to 1, with values greater
than or equal to 0.9 deemed to be ‘‘good,’’ and values greater
than or equal to 0.8 deemed to be ‘‘satisfactory’’ (Dawson et al.
2007).
� The percentage bias (PBias) is ratio of the bias (xp - xo) and the
observed discharge xo multiplied by 100/n, where n is the
number of data points. Values range from (-‘, ‘), with an
optimum score of 0. Negative values indicate, on average, an
under-prediction of discharge, positive values indicate an over-
prediction of discharge. Marechal (2004) states that absolute
values of PBias less than 5% imply excellent model performance.
Absolute values greater than 40% represent poor model
performance.

� The root mean square error (RMSE) is a ‘‘standard’’ measure of
accuracy with a range of values of [0, ‘). Squaring the difference
of simulated and observed values implies the measure is biased
in favor of large differences, making it sensitive to difference
between predicted and observed flow associated with peaks.
� The coefficient of determination, otherwise known as the square
of the Pearson product correlation coefficient squared (R2),
comprises the squared ratio of combined dispersion of the
predicted and observed flow. It describes the portion of the total
statistical variance in the observed flow that can be explained by
the model. The values of R2 range from 0.0 (poor model) to 1.0
(perfect model).

Model parameterization for each rainfall input source is
accomplished using a Monte Carlo method for parameters over
multiple runs through the simulation period ( June through
October). Each goodness-of-fit measure described above is used to
determine viable parameter sets within the Generalized Likelihood

Table 1. Comparative statistics for gauge and MPE accumulations for hourly, event, daily and monthly scales.

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 All

Hourly Basis
Sample Size 1792 3764 5436 5258 4538 5263 4043 3067 3482 4115 3914 3399 48071
Gauge Mean (mm) 1.86 1.61 0.83 1.40 1.74 1.27 2.26 1.38 1.42 1.59 1.62 1.38 1.49
MPE Mean (mm) 1.86 1.63 0.99 1.70 1.65 1.29 2.10 1.33 1.46 1.79 1.75 1.62 1.57
Gauge r (mm) 4.06 4.08 1.95 3.33 4.10 2.75 4.99 3.40 3.80 3.87 3.42 4.23 3.67
MPE r (mm) 3.66 2.93 1.77 3.02 3.31 2.78 3.84 2.69 2.74 3.42 2.89 3.88 3.08
Average Bias (mm) -0.01 0.02 0.16 0.30 -0.08 0.02 -0.16 -0.05 0.03 0.20 0.13 0.24 0.08
(MPE - Gauge) r (mm) 2.24 2.44 1.24 2.58 2.71 1.77 4.03 1.81 2.59 2.72 2.78 2.58 2.53
Relative Bias 0.00 0.01 0.19 0.21 -0.05 0.02 -0.07 -0.03 0.02 0.13 0.08 0.17 0.05
(MPE - Gauge) Relative r (mm) 1.20 1.52 1.49 1.84 1.56 1.40 1.79 1.31 1.82 1.71 1.71 1.87 1.70
Correlation 0.84 0.81 0.78 0.67 0.75 0.79 0.61 0.85 0.73 0.73 0.62 0.80 0.73
Event Basis
Sample Size 352 554 667 765 803 713 785 602 624 691 565 499 7620
Gauge Mean (mm) 9.49 10.93 6.79 9.61 9.82 9.34 11.63 7.03 7.95 9.43 11.22 9.40 9.41
MPE Mean (mm) 8.62 9.44 6.26 9.99 8.28 8.65 9.80 5.99 6.90 9.36 10.32 9.16 8.58
Gauge r (mm) 14.36 17.99 9.54 15.02 23.77 12.44 16.98 9.66 11.87 13.09 15.38 16.09 15.44
MPE r (mm) 12.94 13.27 9.03 14.26 21.94 12.59 14.39 8.00 10.01 12.84 13.27 15.46 13.92
Average Bias (mm) -0.87 -1.49 -0.53 0.38 -1.54 -0.69 -1.84 -1.04 -1.05 -0.06 -0.90 -0.23 -0.83
(MPE - Gauge) r (mm) 5.18 7.04 3.52 8.00 6.18 5.19 5.33 3.77 6.15 6.25 7.91 6.32 6.10
Relative Bias -0.09 -0.14 -0.08 0.04 -0.16 -0.07 -0.16 -0.15 -0.13 -0.01 -0.08 -0.02 -0.09
(MPE - Gauge) Relative r (mm) 0.55 0.64 0.52 0.83 0.63 0.56 0.46 0.54 0.77 0.66 0.70 0.67 0.65
Correlation 0.93 0.94 0.93 0.85 0.97 0.91 0.96 0.93 0.86 0.88 0.86 0.92 0.92
Daily Basis
Sample Size 453 910 1266 1189 1091 940 928 809 786 892 720 703 10687
Gauge Mean (mm) 7.38 6.66 3.58 6.18 7.23 7.09 9.84 5.23 6.31 7.34 8.81 6.79 6.72
MPE Mean (mm) 7.34 6.73 4.25 7.52 6.89 7.21 9.13 5.05 6.45 8.32 9.51 7.98 7.07
Gauge r (mm) 12.05 14.82 6.77 11.51 16.46 10.23 15.05 8.76 10.69 12.97 12.15 13.91 12.45
MPE r (mm) 10.77 11.78 6.61 11.22 15.23 10.26 12.75 7.52 9.39 12.64 11.66 13.77 11.45
Average Bias (mm) -0.03 0.08 0.68 1.34 -0.34 0.12 -0.71 -0.18 0.14 0.99 0.70 1.20 0.35
(MPE - Gauge) r (mm) 5.19 6.83 3.26 7.38 5.64 4.96 6.30 3.97 6.07 6.03 7.06 6.24 5.88
Relative Bias 0.00 0.01 0.19 0.22 -0.05 0.02 -0.07 -0.03 0.02 0.13 0.08 0.18 0.05
(MPE - Gauge) Relative r (mm) 0.70 1.03 0.91 1.19 0.78 0.70 0.64 0.76 0.96 0.82 0.80 0.92 0.87
Correlation 0.90 0.89 0.88 0.79 0.94 0.88 0.91 0.89 0.83 0.89 0.83 0.90 0.88
Monthly Basis
Sample Size 30 60 70 65 70 65 70 70 70 75 55 60 760
Gauge Mean (mm) 111.38 98.72 64.68 99.14 103.16 92.63 129.74 60.45 62.63 87.23 114.25 78.47 90.41
MPE Mean (mm) 110.85 98.54 76.94 124.57 98.49 95.22 120.15 58.40 62.47 96.73 122.87 87.39 94.65
Gauge r (mm) 45.92 60.67 36.03 79.11 85.04 46.06 69.49 27.47 26.02 68.18 77.84 52.11 63.40
MPE r (mm) 38.97 45.88 30.20 80.31 91.92 51.40 60.29 23.56 23.34 71.83 77.59 46.25 62.23
Average Bias (mm) -0.53 -0.18 12.26 25.43 -4.67 2.58 -9.59 -2.05 -0.15 9.50 8.62 8.92 4.24
(MPE - Gauge) r (mm) 15.92 33.46 18.71 41.74 17.73 16.83 16.90 13.43 17.23 21.15 21.02 24.99 24.73
Relative Bias 0.00 0.00 0.19 0.26 -0.05 0.03 -0.07 -0.03 0.00 0.11 0.08 0.11 0.05
(MPE - Gauge) Relative r (mm) 0.14 0.34 0.29 0.42 0.17 0.18 0.13 0.22 0.28 0.24 0.18 0.32 0.27
Correlation 0.94 0.84 0.85 0.86 0.98 0.95 0.98 0.87 0.76 0.96 0.96 0.88 0.92
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Uncertainty Estimation (GLUE) framework (Beven and Binley 1992).
Separate viable parameter sets are determined for gauge and MPE
inputs. Repeated calibration runs are made with randomly selected
parameter sets until a prescribed number of ‘‘viable’’ sets is found for
each year. Streamflow simulations are derived using a set of
parameter sets randomly selected from parameter sets of a given
goodness-of-fit measure from all years prior to the simulated year.

Hydrographs of observed discharge and simulated discharges
derived from gauge and MPE inputs are plotted for each of the four
largest events at both of the USGS gauging stations. Qualitative
characteristics such as peak initiation time, peak height, and peak
length of the observed volume flow are analyzed in the simulated
flow hydrographs.

RESULTS AND DISCUSSION

Table 1 gives comparative statistics for gauge and MPE data on each
of the 4 time scales for each of the 12 years using the formulas given in
Equations (1a) to (1d). Results are ordered by increasing time scale.
The event scale includes events as short as 1 h in duration and longer
than 38 h, as shown in Fig. 2. The average event duration is
approximately 9.1 h (denoted by the solid line), the median duration
is approximately 7 h (dotted line), and the 90th percentile value is
approximately 19 h (dotted line). The dashed lines represent locations
of one standard deviation (7.84 h) on either side of the mean.

Statistical Analysis

The last column of Table 1 gives values determined by combining
all years of data for the given quantity. The relative bias for each scale
based on all years is positive except for the event scale. The relative
bias magnitude on all scales is slightly less than 0.1. These values are

similar to those reported by Habib et al. (2009), Wang et al. (2008),
and Westcott et al. (2008). MPE standard deviations are slightly less
than gauge standard deviations for all time scales as expected because
gauge data is a point-wise measure and MPE accumulation is an areal
measure subject to less variability. The standard deviation of the
relative bias is largest on the hourly scale. Somewhat surprisingly, the
relative bias standard deviation is larger on the daily scale than the
event scale given that the event average duration is approximately 9
h. However, the event scale accumulation means are larger than those
for the daily scale. The hourly scale has the weakest Pearson
correlation value of 0.74, while the longer time scales have
correlations around 0.9. The correlation values are slightly less

Fig. 1. The Upper Iowa watershed study region stretching from Lake Louis near Leroy, MN., in the far upper left corner, to Decorah, IA., in the lower
right corner. MPE cells are indicated by the grey lines.

Fig. 2. Event duration relative histogram. The median event length is
approximately 7 hours (dotted line), the average event duration is
approximately 9 hours (solid line), the 90th –percentile event duration is
19 hours (dotted line). Lines representing one standard deviation (7.8)
from the mean are plotted as dashed lines.
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than those reported by Habib et al. (2009). This is likely due to MPE
pixels having as many as four gauges in that study, whereas a single
gauge per MPE pixel is used in this study. On the monthly scale,
there appears to be some correlation between low Pearson score and
lower gauge mean values.

Bias Analysis

Frequency distributions of relative bias for the hourly, event,
daily, and monthly scales are shown in Fig. 3. Table 2 gives the
percentage of MPE values that fall below a relative bias threshold for
each scale. Segregating the positive and negative occurrences
quantifies the existence of any skewing. On the hourly scale,
approximately 49.9% of the MPE accumulations have an absolute
relative bias less than 0.3, of which 29.7% are negative and 20.2% are
positive. Slightly more than 26% of the MPE accumulations had a
relative bias of more than 0.5. The percentage of event
accumulations to exceed a 0.5 absolute relative bias drops to
15.8%. Approximately 64.2% of the event accumulations were
within 30% of the gauge reading, of which 34.8% had a negative bias
and 29.4% were positive.

Conditioning the bias by the hourly gauge accumulation provides
a more specific understanding of the hourly bias. MPE bias on the
hourly scale is separated into bins of width 1 mm. Box and whisker
plots for accumulation bins ranging from 0 to 30 mm are shown in
Fig. 4(a). The median bias becomes negative for hourly gauge

Fig. 3. Relative frequency histograms of relative bias for each of the four
time scales.

Fig. 4. MPE bias as a function of hourly gauge accumulations.

Table 2. Percentage of MPE accumulations within a relative bias threshold for each time-scale.

Scale

Less than 0.10 Less than 0.20 Less than 0.30 Less than 0.40 Less than 0.50 Greater than 0.50

- þ tot - þ tot - þ tot - þ tot - þ tot - þ tot

Hourly 9.8 8.2 17.9 20.0 14.9 34.9 29.7 20.2 49.9 38.3 24.3 62.6 45.8 27.7 73.5 13.9 12.6 26.5
Event 13.0 12.6 25.6 25.1 22.3 47.4 34.8 29.4 64.2 41.1 34.9 76.0 44.7 39.5 84.2 2.5 13.2 15.8
Daily 11.3 10.9 22.2 20.4 20.8 41.2 28.4 28.0 56.4 33.8 34.0 67.8 37.9 38.2 76.1 6.5 17.3 23.8
Monthly 15.5 17.8 33.3 23.5 34.5 58.0 27.3 46.2 73.5 28.0 55.0 83.0 28.1 60.9 89.0 0.0 11.0 11.0
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accumulations greater than 4 mm, and more than 75% of the MPE
bias is negative for gauge accumulations greater than 9 mm.

The absolute relative bias portions for each accumulation bin in
Fig. 4(a) are shown in Fig. 4(b). The portion of MPE accumulations
having an absolute relative bias less than 0.1 is shown in the dark gray
segment. The next segment, in lighter gray, represents the portion of
the MPE accumulations having an absolute relative bias greater than
0.1 but less than 0.2, and similarly for the 0.2 to 0.3, 0.3 to 0.4, and
0.4 to 0.5 segments. The white segment of the bar corresponds the
percentage of the MPE accumulations having an absolute relative
bias greater than 0.5. The distribution of bias improves as the gauge
accumulation increases from 0 to 7 mm, where 70% of the MPE
accumulations have an absolute relative bias less than 0.5. No strong
tendency or pattern is evident as the gauge accumulation increases
further.

Bias is further detailed by decomposition into three categories: FZ
¼ false zero (RMPE ¼ 0 and RG . 0), FP ¼ false positive (RMPE . 0
and RG¼0), and HB¼hit bias (RMPE . 0, RG . 0, and RMPE „ RG).
The total bias (TB) is the sum of the three components: TB¼ FZþ
FP þ HB. The FZ portion is non-positive, the FP portion is non-
negative, and the HB portion is negative, zero, or positive.
Decomposition on the hourly scale for each year is shown in
Table 3. Each bias component is summed over all hours and all sites,
and its percentage relative to the total gauge accumulation is
calculated. Values in the last column of the table are determined by
summing over all years as well. Clearly, FP bias represents the greatest
percentage of the total bias. It is naturally countered by the FZ bias
(with smaller magnitude) in all years, and the HB bias in 9 of the 12
years. The resulting net bias is quite variable through the 12-year
interval, with a range of -4.8% to 21.4%.

The probability of false zeros (PFZ) is experimentally determined
by identifying hours in which the MPE accumulation is zero and the
gauge accumulation is non-zero. There were 13,574 hours of zero
MPE accumulation out of a total of 568,900 hours non-zero gauge
accumulation, giving a probability of 0.023. The experimental
probability of false positives (PFP) is 0.394, based on 16,263 hours
for which the MPE accumulation was non-zero and 41,284 hours for
which the corresponding gauge accumulation was zero. The relatively
high PFP is examined more closely by conditioning it on the MPE
accumulation, as shown in Fig. 5. For MPE accumulation less than

0.25 mm, the probability of a false positive is approximately 0.5. The
probability drops quickly as the MPE accumulation value increases,
dipping below 0.05 when the MPE amount is greater than 2 mm, and
0.01 for MPE values greater than 5.7 mm.

Fig. 6 shows the relative MPE event bias as a function of the
average event rainfall rate in mm h�1. MPE relative bias for all events
is collected in bins of width 1.0 mm h�1. The bin sample size is 4,107
for 1 mm h�1, and decreases to 13 for the 15 mm h�1. The median
relative bias is negative for all event mean rates, and hovers around
-0.25. The spread of MPE relative bias decreases significantly as the
event mean rate increases. For event rates greater than 6 mm hr�1,
well over 75% of the corresponding MPE accumulations have a
negative bias.

The distribution of MPE event bias is dependent on the
magnitude of the event accumulation as shown in Fig. 7. Event
bias is collected in 5 mm-wide bins for site event gauge
accumulations ranging from 12.5 mm to 24.9 mm, 25.0 mm to
49.9 mm, 50.0 mm to 74.9 mm, and greater than 74.9 mm. For the
event interval of 12.5 to 24.9 mm, 89% of the MPE accumulations
were negatively biased, 85.4% of the MPE totals were negatively
biased for the 25.0 to 49.9 interval, 91.6% were negatively biased for
the 50.0 to 74.9 mm interval, and 91.2% were negatively biased for
gauge accumulations of 75 mm or greater.

Spatial Analysis

Pearson product moment (PPM) coefficients are calculated using
the hourly, daily, and monthly scales for both the gauge and MPE
data. Plots of the coefficient as a function of site separation are
shown in Fig. 8. The continuous distribution, shown as the solid
curve for gauge data and the dashed curve for MPE data, is modeled
by the formula:

rðhÞ ¼ a*exp � h

b

� �c� �
a � �1; 1½ �; b . 0; c � 0; 2½ � ð3Þ

The site separation distance h is measured in kilometers. Small-
scale variability and the measurement error are given by the nugget
parameter a (Journel and Huijbregts 1978). Values closer to 1.0 imply
smaller variability in the process and lesser measurement errors. The
parameter b corresponds to the separation distance at which the site

Fig. 5. The probability of a false positive (PFP) conditioned by the MPE
accumulation on the hourly scale.

Fig. 6. Box and whisker plots of MPE event relative bias as a function of
the event mean rate.

Table 3. Bias decomposition on the hourly scale.

year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 All

False Zero (%) -4.9 -2.5 -6.3 -7.2 -10.7 -5.4 -9.2 -9.3 -9.3 -3.6 -5.1 -5.5 -6.4
False Positive (%) 8.7 14.7 26.7 17.5 10.9 9.1 8.6 15.5 15.5 13.5 16.0 19.7 14.0
Hit Bias (%) -4.3 -11.1 -1.4 11.2 -4.9 -2.0 -6.6 -4.0 -4.0 2.9 -3.0 3.0 -2.4
Net Bias (%) -0.5 1.1 19.0 21.4 -4.8 1.8 -7.2 2.2 2.2 12.8 8.0 17.2 5.1
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Fig. 7. Histograms of MPE event bias conditioned by gauge event accumulation.

Fig. 8. Pearson product moment (PPM) coefficients as a function of site separation (km) for hourly, daily and monthly time scales. Discrete
observations are shown with ‘‘o’’ for gauge data and ‘‘þ’’ for MPE data. Modeled continuous distributions are shown for gauge data (solid lines) and MPE
data (dashed lines).
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accumulations lose correlation. Parameter c controls the shape of the
correlation function in the range of small-scale separation. The closer
c is to unity, the more the correlation follows a true exponential
decay at low separation distances. Parameter values for several time
scales are shown in Table 4.

Generally speaking, parameter values for gauge and MPE data are
similar for all scales. The two possible exceptions are the values for c
for the daily and monthly time scales, with the gauge cases showing
less true exponential behavior (the value of c further from 1.0). Loss
of correlation separation is less for the gauge on the hourly scale, but
slightly greater on the other two time scales. The relative increases are
only 4% and 16%, respectively. The values for a and b in this study
are similar to those reported by Villarini and Krajewski (2008).
However, the shape factor values for gauge data on the daily and
monthly scales are smaller (meaning the correlation decay is less
exponential) than reported in that article.

Hydrological Input Analysis

Comparison of gauge and MPE on the basin spatial scale is
examined by using the different inputs to the blocked Topmodel
framework. Discharge volumes at the gauged sites of Bluffton and
Decorah are calculated on an hourly interval for approximately the
same June through October interval for each year (2004 to 2015).
Observed discharges are used to determine the viability of the
simulated flows using various goodness-of-fit measures. Tables 5 and
6 show six goodness-of-fit measures for gauge-based (G) and MPE-
based (M) Upper Iowa River stream flow simulations at the Bluffton
and Decorah gauge stations, respectively. Measures include the
Gupta-Kling Efficiency (GKE), the Nash-Sutcliffe Efficiency (NSE),
the Index of Agreement (IoA), the Percentage Bias (PBias), the Root
Mean Square Error (RMSE), and the Pearson product correlation
coefficient squared (R2). The mean and standard deviation values for
each measure over the set of results, shown in the last two columns,

are calculated after removing results from year 2012—an extremely
dry summer with very low flow volume.

Box plots for each measure using the seasonal results shown in
Tables 5 and 6 are shown in Fig. 9. The outliers evident in the NSE-
measure data for both the gauge and MPE cases correspond to the
extreme low-flow year of 2012. The same is true for the gauge-based
outlier in percentage bias (PBias). Paired t-tests on each measure
indicate that the null hypothesis (equal mean values for the different
rainfall input sources) cannot be rejected in any measure. PBias is
negative for all years for both stations for both inputs, with the
exceptions being 2012 for both measures and both stations, and
gauge input for the Decorah station for 2005. The one measure that
may indicate a statistically significant difference in means is PBias,
where it is generally more negative for MPE based projections. The
gauge data PBias outlier for the Decorah station and year 2012 is
notable. The standard deviation for MPE results is generally higher
for the gauge based simulations, suggesting more season-to-season
variance. The gauge-based R2 values are higher for both stations with
less standard deviation, which is contrary to the findings of Price et
al. (2011). The R2 values for both gauge and MPE simulations are
considerably better than those reported in the same study.

Hydrographs for the four events for both stations are shown in
Fig. 10. The observed hydrographs show multiple relative maximums
for each event, although some are rather subtle, such as in the cases
of Bluffton 2007 and 2008.

For the 2007 event, both gauge- and MPE-based hydrographs
show a ‘‘false’’ peak prior to the major peak at Bluffton. The MPE
case is more drastic. However, the MPE hydrograph does show some
waviness after the major peak, as in the observed hydrograph,
although the gauge hydrograph shows no such characteristic. Both
input sources result in an under-prediction of the major peak
magnitude. The Decorah 2007 hydrographs show similar results,
except simulations result in extremely close agreement with the
magnitude and the time of the major peak.

Gauge and MPE hydrographs both greatly overestimate the
Bluffton peak, gauge-based by 67% and MPE-base by 33% for the
June 2008 event. MPE picked up on the small ‘‘after-peak’’ at
Bluffton, but the peak occurred sooner than observed and did not
match the observed peak in duration. The gauge hydrograph showed
no after-peak. The major Decorah peak for this event was under-
predicted by both gauge- and MPE-based simulations, more so by
the MPE case with a relative error of 22% compared to the gauge-
based relative error of 10%. The simulated peaks are less sharp than
the observed peak and occur several hours later. The MPE
hydrograph shows a trailing minor peak and matches the time of

Table 4. Gauge and MPE Pearson product moment modeling
parameters for various time scales.

Scale
Hourly Daily Monthly

Measure Gauge MPE Gauge MPE Gauge MPE

a 0.9999 0.9955 1.0 0.9957 1.0 0.9955
b 36.25 44.37 192.9 184.8 775.8 665.2
c 0.9124 0.9586 0.6549 0.9058 0.5556 0.8311

Table 5. Goodness-of-fit measures for gauge-based (G) and MPE-based (M) rainfall runoff results for the Bluffton Station.

Input Measure 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean* SD*

G GKE 0.671 0.731 0.574 0.226 0.494 0.581 0.747 0.629 0.23 0.070 0.638 0.103 0.497 0.247
M GKE 0.594 0.245 0.510 0.538 0.649 0.442 0.472 0.045 0.425 0.422 0.676 0.060 0.423 0.218
G NSE 0.696 0.476 -0.172 0.037 0.578 0.613 0.756 0.579 -1.05 0.283 0.733 0.335 0.447 0.299
M NSE 0.711 -0.975 -0.03 0.068 0.798 -0.097 0.484 -0.339 -0.346 0.603 0.662 0.270 0.196 0.539
G IoA 0.901 0.882 0.727 0.699 0.928 0.876 0.947 0.867 0.644 0.645 0.920 0.615 0.819 0.122
M IoA 0.905 0.530 0.704 0.792 0.958 0.744 0.838 0.553 0.700 0.845 0.902 0.567 0.758 0.152
G PBias -21.1 -8.64 -36.6 -51.9 -41.4 -30.5 -23.3 -22.8 36.3 -48.9 -32.3 -43.4 -32.8 13.2
M PBias -29.2 -30.4 -10.7 -24.4 -53.4 -33.6 -44.5 -55.6 4.3 -34.8 -26.4 -46.1 -35.4 13.5
G RMSE 8.41 2.40 1.58 16.4 30.4 4.76 8.84 3.03 1.83 26.6 6.93 13.2 11.1 9.97
M RMSE 8.20 4.67 1.48 16.2 21.0 8.01 12.9 5.40 1.48 19.8 7.81 13.8 10.8 6.36
G R2 0.752 0.643 0.772 0.391 0.863 0.734 0.846 0.715 0.320 0.640 0.840 0.849 0.731 0.138
M R2 0.838 0.155 0.291 0.455 0.886 0.379 0.671 0.636 0.309 0.718 0.738 0.765 0.594 0.238

*- excluding year 2012
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initiation well, but not the duration. No such feature is shown in the
gauge-based hydrograph.

The initiation of the Bluffton 2013 event was too late for both
data-source hydrographs. Both do a better job with the Decorah peak
initiation. Their hydrographs capture the subtle characteristics of the
observed hydrograph, but very much underestimate the magnitude
of the major peak and the two trailing minor peaks for the Bluffton
hydrograph—the MPE estimate more so than the gauge estimate.

Both input hydrographs capture the shape and timing of the
Decorah major peak, but underestimate the magnitude, with a
relative error of 32% and 38% for the gauge and MPE inputs,
respectively. The MPE hydrograph captures some of the subtleties of
the observed case, but misses on timing and magnitude. Once again,
these finer features are not evident in the gauge-based hydrograph.

The 2015 event is easily the worst for both inputs in terms of
major peak magnitude at both the Bluffton and Decorah stations.

Table 6. Goodness-of-fit measures for gauge-based (G) and MPE-based (M) rainfall runoff results for the Decorah Station.

Input Measure 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean* SD*

G GKE 0.715 -0.052 0.480 0.323 0.802 0.775 0.520 0.680 -0.186 0.259 0.802 0.183 0.499 0.289
M GKE 0.566 0.700 0.441 0.516 0.739 0.445 0.612 0.044 0.190 0.578 0.767 0.064 0.497 0.244
G NSE 0.700 -0.234 0.256 0.04 0.965 0.634 0.535 0.666 -3.633 0.509 0.788 0.472 0.485 0.346
M NSE 0.626 0.649 0.156 0.128 0.953 -0.191 0.475 -0.303 -1.099 0.793 0.687 0.290 0.388 0.406
G IoA 0.901 0.860 0.749 0.734 0.992 0.896 0.921 0.895 0.513 0.818 0.946 0.718 0.858 0.910
M IoA 0.882 0.884 0.683 0.829 0.987 0.743 0.864 0.559 0.646 0.937 0.917 0.567 0.805 0.147
G PBias -23.2 18.6 -30.1 -36.1 -33.8 -3.70 -9.41 -16.8 70.5 -46.8 -16.9 -38.5 -21.5 18.7
M PBias -35.8 -7.48 -9.56 -16.6 -47.2 -20.3 -37.7 -53.2 24.7 -33.5 -15.1 -42.5 -29.0 15.8
G RMSE 11.4 22.0 2.67 23.6 15.7 4.80 10.4 3.77 2.76 33.8 7.86 16.9 13.9 9.67
M RMSE 12.7 11.8 2.85 22.5 18.2 8.66 11.0 7.44 1.86 22.0 9.56 19.6 13.3 6.41
G R2 0.753 0.894 0.698 0.373 0.975 0.671 0.842 0.756 0.285 0.815 0.827 0.936 0.776 0.164
M R2 0.789 0.653 0.305 0.558 0.936 0.372 0.678 0.719 0.319 0.871 0.737 0.801 0.677 0.200

*- excluding year 2012

Fig. 9. Box and whisker plots for gauge-based (G) and MPE-based (M) stream flow simulation error for six goodness-of-fit measures at the Bluffton (B)
and Decorah (D) stations.
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Fig. 10. Bluffton and Decorah station hydrographs for four large events.
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Both simulations do a fair job of capturing the shape of the wave,
and the gauged-based peak magnitude for Decorah is better than the
MPE-based case, yet still has a relative error of 62%.

SUMMARY AND CONCLUSIONS

Using data collected from 16 sites over 12 years (not all sites are
included in all years), the average relative bias of MPE accumulations
is positive on the hourly, daily, and monthly time scales with a value
of 0.05. However, the average relative bias on the event scale is -0.09.
The standard deviation of the relative bias is greatest on the hourly
scale, with a value of 1.70, and decreases to 0.27 on the monthly
scale. MPE accumulation standard deviation is less than gauge
accumulation standard deviation on all scales, probably because it
represents an areal average accumulation whereas the gauge data
represents a point-wise accumulation. MPE and gauge measure
correlations are strongest for the event and monthly scales. This true
for the event scale even though the standard deviation of relative bias
is greater compared to the other scales.

The distribution of relative MPE bias is negatively skewed for all
time scales. The percentage of MPE accumulations within a certain
relative bias threshold increases as the time scale increases. For
example, 17.9% of MPE readings had a relative bias less than or equal
to 0.1 on the hourly scale. On the monthly scale, this percentage
increases to 33.3%. MPE bias threshold results are better on the event
scale than on the daily scale at all threshold values. For example,
84.2% of the MPE accumulations had a relative bias less than 0.50
on the event scale, whereas 76.1% met this threshold on the daily
scale. Recall that the event scale has an average and median duration
of 9 and 7 hours, respectively.

Hourly MPE bias conditioned by the gauge accumulations
becomes more predominantly negative as the accumulation
amount increases. For gauge accumulations 9 mm and greater,
MPE bias is negative for 75% or more of the cases. When the
absolute value of relative bias for each bin is proportioned by
magnitude, there is significant improvement from 0 to 3 mm gauge
accumulation. On this interval, the percentage of MPE observation
with relative bias less than 0.5 improves from 32% to 67%.
Thereafter, no significant improvement is seen.

Hourly bias decomposed into categories of false zero, false
positive, and hit bias shows that the category of false positive
represents the greatest portion of the total bias, averaging 14% of the
gauge accumulation. Hit bias averaged only -2.4% of the gauge
accumulation. The probability of a MPE estimation being a false
positive drops to less than 0.10 for MPE accumulations of 1.0 mm
and greater.

On the event scale, the mean relative bias conditioned by event
rate switches from positive to negative as the rate increases from 2 to
3 mm h�1. The median relative bias clusters around the value of -0.25
as the accumulation rate increase to 10 mm hr�1 and greater.
Approximately 90% of the MPE accumulations are negatively biased
on the event scale, independent of event gauge accumulation.

Gauge and MPE data exhibit similar spatial characteristics based on
the Pearson product-moment coefficient values for the hourly, daily,
and monthly time scales. MPE data show de-correlation occurring at
long site-separation distances on the hourly scale, whereas the opposite
result emerges for the daily and monthly scales.

Little if any significant differences are found in using the two
rainfall measures as the basis for input to the Topmodel rainfall
runoff algorithm and the GLUE methodology. Six goodness-of-fit
measures were calculated for the continuous simulation interval of
June through October for each year. Paired t-tests on each measure
indicate that the null hypothesis (equal mean values for the
measures) cannot be rejected for any of the measures.

In terms of significant basin-wide rainfall events and the
corresponding river response, MPE-derived hydrographs generally do
a better job of resolving subtleties in event peak characteristics such as
minor peaks. However, the timing and magnitude for such features is
not extremely accurate in many cases. Both inputs do well in matching
the onset of the streamflow event and the overall length of the event.
The one exception for initial event rise is Bluffton 2013. Both inputs
either underestimated or overestimated observed major peak flows in
concert. In one of the eight instances, simulated discharges based on
both inputs overestimated the observed major peak magnitude—gauge-
based more so than MPE by 67% versus 33% relative error,
respectively. In one instance, both matched the major peak discharge
extremely well (Decorah 2007). The projected discharges
underestimated the major peak discharge in the six other instances
with relative errors ranging from 10% (Decorah 2007) to 87% (Bluffton
2015). Both do well in the timing of major peak occurrence except for
one instance. The MPE results are generally better at capturing the
shape of the event wave in terms of leading or following minor peaks.

ACKNOWLEDGEMENTS

The Upper Iowa Rainfall Runoff project has received financial
support (four student stipends) through the NCUR/Lancy Initiative
‘‘Humans and their environmental choices; Winneshiek County,
Iowa.’’ Support in the form of a stipend for student collaboration
and funds for recording rain gauges were made possible by a United
States Environmental Protection Agency Assistance Agreement
(grant number X-98757301-0).

This study was made possible through the willingness of the Iowa
Flood Center to provide MPE data. The author also appreciates the
guidance and feedback received from Witold Krajewski, Bongchul
Seo, Ricardo Mantilla, Felipe Quintero, and Gabriel Villarini.

Technical assistance was provided by Dave Pahlas and the
Decorah Water Plant, Lee Bjerke and the Winneshiek County
Engineer’s office, Dan Wade and the Howard County Engineer’s
office, Terry Haindfield and John Pearson of the Iowa Department of
Natural Resources, Daryl Herzmann and the Iowa Environmental
Mesonet, and Adam Kiel and Paul Berland of Northeast Iowa
Resource Conservation and Development.

LITERATURE CITED

AUSTIN PM. 1987. Relation between measured radar reactivity and surface
rainfall. Monthly Weather Rev. 115:1053–1070.

BEVEN KJ, BINLEY A. 1992. The future of distributed models: Model
calibration and uncertainty prediction. Hydrolog Proc. 6(3):279–298.

BIGGS EM, ATKINSON PM. 2011. A comparison of gauge and radar
precipitation data for simulating an extreme hydrological event in the
Severn Uplands, UK. Hydrolog Proc. 25(5):795–810.

CIACH G. 2003. Local random errors in tipping-bucket rain gauge
measurements. J Atmos Ocean Tech. 20(5):752–759.

COLE SJ, MOORE RJ. 2008. Hydrological modelling using raingauge- and
radar-based estimators of areal rainfall. J Hydrol. 358(3-4):159–181.

DAWSON CW, ABRAHART RJ, SEE LM. 2007. HydroTest: A web-based
toolbox of evaluation metrics for the standardised assessment of
hydrological forecasts. Env Mod & Software. 22(7):1034–1052.

FULTON RA. 2002. Activities to improve WSR-88D radar rainfall estimation
in the National Weather Service. In: Proceedings of the Second Federal
Interagency Hydrologic Modeling Conference, Las Vegas, NV. Leavesley
GH (ed).

GEBREMICHAEL M, KRAJEWSKI W. 2004. Assessment of the statistical
characterization of small-scale rainfall variability from radar: Analysis of
TRMM ground validation datasets. J Appl Meteor. 43(8):1180–1199.

GUPTA HV, KLING H, YILMAZ K et al. 2009. Decomposition of the mean
squared error and NSE performance criteria: Implication for improving
hydrological modelling. J Hydrol. 377(1-2):80–91.

22 JOUR. IOWA ACAD. SCI. 124(2017)



ILLINGWORTH A, THOMPSON R. 2011. Radar bright band correction
using the linear depolarisation ratio. IAHS Publ. 3XX:1-5.

HABIB E, KRAJEWSKI W, KRUGER A. 2001. Sampling errors of tipping-
bucket rain gauge measurements. J Hydrol Eng. 6(2):159–166.

HABIB E, LARSON BF, GRASCHEL J. 2009. Validation of NEXRAD
multisensor precipitation estimates using an experimental dense rain gauge
network in south Louisiana. J Hydrol. 373(3):463–478.

JAYAKRISHNAN RR, SRINIVASAN R, ARNOLD GJ. 2004. Comparison
of raingauge and WSR-88D stage III precipitation data over the Texas-
Gulf basin. J Hydrol. 292:135–152.

JOURNEL AG, HUIJBREGTS CJ. 1978. Mining Geostatistics. University of
California: Academic Press.

KRAJEWSKI W, CIACH G, HABIB E. 2003. An analysis of small-scale
rainfall variability in different climate regimes. Hydrol Sci J. 48:151–162.

LEGATES D, MCCABE G. JR. 1999. Evaluating the use of ‘‘goodness-of-
fitness’’ measures in hydrologic and hydroclimatic model validation.
Water Resour Res. 35(1):233–241.

MARECHAL D. 2004. A soil-based approach to rainfall-runoff modelling in
ungauged catchments for England and Wales [thesis]. Silsoe (UK):
Cranfield University Institute of Water and Environment.

NASH JE, SUTCLIFFE JV. 1970. River flow forecasting through conceptual
models: Part 1—A discussion of principles. J Hydrol. 10(3):282–290.

PRICE K, PURUCKER ST, KRAEMER SR. 2011. Multi-scale comparison
of Stage IV NEXRAD (MPE) and gauge precipitation data for watershed
modeling. In: Proceedings of the 2011 Georgia Water Resources
Conference. Athens (GA): US EPA Office of Research and
Development.

SHEPARD D. 1968. A two-dimensional interpolation function for
irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National

Conference. New York (NY): Association for Computing Machinery.
517-524.

STEINER M, SMITH JA, BURGESS S et al. 1999. Effect of bias adjustment
and rain gauge quality control on radar rainfall estimation. Water Resour
Res. 35(8):2487–2503.

TAKEUCHI K, AO T, ISHIDAIRA H. 1999. Introduction of block-wise use
of TOPMODEL and Muskingum-Cunge method for the hydro-
environmental simulation of a large ungaged basin. Hydrol Sci J.
44(4):633–646.

VILLARINI G, KRAJEWSKI W. 2008. Empirically-based modeling of spatial
sampling uncertainties associated with rainfall measurements by rain
gauges. Adv Water Resour. 31(7):1015–1023.

WANG X, XIE H, SHARIF H et al. 2008. Validating NEXRAD MPE and
Stage III precipitation products for uniform rainfall on the Upper
Guadalupe River Basin of the Texas Hill Country. J Hydrol. 348:73–86.

WESTCOTT NE, KNAPP HV, HILBERG SD. 2008. Comparison of gage
and multi-sensor precipitation estimates over a range of spatial and
temporal scales in the Midwestern United States. J Hydrol. 351(1):1–12.

WILLMOTT C, ACKLESON S, DAVIS R et al. 1985. Statistics for the
evaluation and comparison of models. J Geophys Res. 90(C5):8995–9005.

WOLTER CF, MCKAY RM, LIU H et al. 2011. Geologic mapping for water
quality projects in the Upper Iowa River Watershed. Technical
Information Series No. 54. Des Moines (IA): Iowa Geological and
Water Survey and Iowa Department of Natural Resources.

WOOD SJ, JONES DA, MOORE RJ. 2000. Accuracy of rainfall
measurement for scales of hydrological interest. Hydrol Earth Sys Sci.
4(4):531–543.

XIE H, ZHOU X, VIVONI E et al. 2005. GIS-based NEXRAD Stage III
precipitation database: Automated approaches for data processing and
visualization. Comp Geosci. 31(1):65–76.

COMPARISON OF RAINFALL MEASUREMENTS 23


	A statistical, spatial, and hydrologic comparison of gauge-based and MPE-based rainfall measurements
	Recommended Citation

	A statistical, spatial, and hydrologic comparison of gauge-based and MPE-based rainfall measurements

