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An Application of Covering Spaces 

GEORGE SEIFERT1 

Abstract. Consider an n-cell containing the origin and sup­
po~e its boundary S"-1 has the following property: every 
pomt on sll-l contains a neighborhood in sn-l such that any 
ray from the origin intersecting this neighborhood intersects 
it exactly once. Then it is shown by using the concept of a 
covering space that any ray from the origin intersects sn-1 
exactly once. 

In some recent work of the author in differential equations, 
the following geometric problem arose. Suppose the surface 
sn-1 of an n-cell En which contains the origin in such that for 
each point x 2 su-1 there is a surface neighborhood N,. containing 
x such that if y e N,,, the ray from the origin through y inter­
sects N;.: exactly once. Then it is true that every ray from the 
origin intersects sn-l exactly once? The answer is in the affirma­
tive, and it can be proved directly. It is the purpose of this note, 
however, to formulate the problem as an application of cover­
ing spaces. The following two definitions are as given in Cheval­
ley' s "Theory of Lie Groups I," p. 40. We assume the topological 
spaces involved are locally connected; i.e., each neighborhood of 
a point contains a connected neighborhood of that point. 

Definition 1. Let f be a continuous function on a space V to 
a space V. The set E c V is said to be evenly covered 
by V with respect to f if f-1 ( E) is not empty, and every 
component of f- 1 ( E) is mapped homeomorphically onto E by f. 

Definition 2. A covering space (V, f) of a topological space 
V is a pair such that V is a con!iected topological space, 
and f is a continuous function of V onto V which has the 
property that each point of V has a neighborhood which is 

evenly covered by V with respect to f. 

We state some furtl:ter definitions. 

Definition 3. Let S be a subset of Rn, the n-space over the reals. 
A neighborhood in S of the point x e S is any set of the form 
Dx () su-1, where Dx is an open set in R" containing x. 
Definition 4. A set S C R" is r-convex if for each x e S such 
that x # O, the set of points i Ax h A :::-,.0, satisfies i A.x ( 11 S=x. 

1 This research was supported by the National Science Foundation under Grant 
NSF-Gl7851. 
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Definition 5. A set S C Rn is locally r-convex if for each 
x e S, there exists a neighborhood Nx in S containing x such 
that Nx is r-convex. 

We assume the topology in R" to be defined by a norm, and 
denote by Ix! the norm of x e Rn; since all norms for Rn are 
equivalent, it is no loss of generality to assume this norm is 
Euclidean norm. 

It is known that the boundary of any n-cell in Rn is locally 
connected. 

Let En be an n-cell containing the origin, and let S11- 1 be its 
boundary. Let Kn-l be the unit sphere in R11 ; i.e., the set of x 
such that !xi = 1. Define the function of f on s 0 - 1 to K11-1 by 
f(x) = x/jxj. Clearly f takes sn-1 onto K0 - 1 and is continuous. 

We now show that if sn-1 is locally r-convex ( sn-i, f) is a 
covering space of Kn-1 • Fix y e K0 - 1 ; since the set i X yr (\ su-1 , 

~ ~ 0, is compact in Rn, f- 1 ( y) is compact since, in fact, 
f- 1 ( y) = i Xy r I) sn-i, X.:::::,,,. 0. Since su-1 is locally r-convex, 
there exists for each point x e f- 1 ( y) a neighborhood Dx in Rn-1 

such that if Nx = Dx (\ s0 - 1, then f is one-to-one on N,. By the 
Brouwer "Theorem on Invariance of Domain" (cf. Hurewicz and 
Wallman, "Dimension Theory," p. 95) f(Nx) is a neighborhood 
in Kn-l of y. By the Heine-Borel theorem, there exists a finite set 
i xk h k = 1,2 . . . , m, of points, xk e f-1 ( y) such · that 

m Dxk ~ f- 1 (y). Using the fact that fis one-to-one on Nxk> 
k:=l 
k = 1,2, . . .. , it follows that f- 1 ( y) consists of the finite set 
ixkh k = 1, ... , m. We now define Ny={) k~'if(Nxk); Ny is 
clearly a neighborhood in Kn-1 of y, and each component of f- 1 

(Ny) is mapped homeomorphically onto Ny by f; this also fol­
lows readily from the Brouwer theorem mentioned above. Hence 
( sn-1 , f) is a covering of K11- 1 • We will now apply the following 
result (Lemma 1, p. 45, Chevalley, ibid.): 

If ( V, f) is a covering space of V, and A is an open 
subset of V which is m!pped one-to-one onto V ~ f, then 
f is a homeomorphism of V with V, an din fact, A = V. 

We define our set A as follows: let y e K0 - 1, and denote 
by g(y) the point of f-1 (y) nearest the origin. This point g(y) 
e s•-I clearly exists, since f-l ( y) is :finite. we denote by A the 
se~ i g( y) h ye K0 - 1• Suppose A is not open in s 0 -1; then there 

· exist~ ~n x e A, xk e A, such that xk ~ x as k ~ oo . Hence, by the 
defimt10n of A, there exists for each k, a point Yk e A such that 
jykl < jx1<J, and f(xk) = f(yk). Since s 0 - 1 is compact, it is no loss 

2

Proceedings of the Iowa Academy of Science, Vol. 70 [1963], No. 1, Art. 59

https://scholarworks.uni.edu/pias/vol70/iss1/59



1963] COVERING SPACES 353 

of generality to suppose that Y1t ~ y e sn-1 as k ~ oo, If y # x, 
then clearly jyj < jxj, a contradiction, since x e A. On the other 
hand, if y = x, there exist in each neighborhood in sn-l of x dis­
tinct points xk,yk for k sufficiently large; this contradicts the 
hypothesis that sn-1 is locally r-convex. Thus A must be open, 
and since clearly f (A), = Kn-i, the above lemma applies. Since 
A = sn-1 , it follows that sn-1 is r-convex. 

A number of short remarks are in order. It is not true that a 
compact locally r-convex set in Rn is necessarily r-convex; for 
example, consider a spriral in the R2 plane about the origin. 

On the other hand, a compact locally r-convex set in Rn is a 
locally connected space; this can be proved by arguments along 
the lines of the central one in the proof that ( sn-i, f) is a cov­
ering space of Kn-1 • This suggests that sn-1 could be more gen­
eral than the boundary of an n-cell; in fact; if sn-l is a compact 
( n-1 )-smface in Rn which is the boundary of a domain in R11 

containing the origin, then its local r-convexity implies its r-con­
vexity. 

Finally, I would like to thank Professors L. K. Jackson and G. 
H. Meisters for pointing out to me that the concept of covering 
space is applicable to the original problem. 
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