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ABSTRACT

Sensitivity analysis and Multiple Linear Regression (MLR) are the most
extensively used techniques in studying the input-output relationship in building
thermal systems. However, both MLR and most methods for sensitivity analysis
do not account for nonlinear components embedded in building energy systems.
Thus, their results might be distorted.

In this study, the Artificial Neural Networks (ANN) technique was applied
to sensitivity analysis and modeling of an imaginary small office in order to (a)
examine how the annual energy consumption responded to 40 building design
parameters and evaluate relative contributions of these parameters to the
variation of the building energy performance, and (b) develop models to
represent the relationship between the annual energy usage with input
parameters and then use these models to predict energy consumption. The data
used for sensitivity analysis and modeling were generated by DOE-2.1E
simulation program.

Both Differential Sensitivity Analysis (DSA), the most conventional
sensitivity analysis method, and ANN techniques were employed to analyze the
sensitivity of building annual energy consumption to 40 design parameters. The
relative importance of these parameters to the energy usage was ranked by the
sensitivity coefficients coming from both DSA and ANN methods.

The relationship between building energy consumption and input

parameters was then modeled by both MLR and ANN techniques using the most



important 5, 10, or 15 parameters yielded in the above sensitivity analysis
experiments. A comparison of the results demonstrated that:

1. ANN models were better than MLR models in predicting energy
consumption because the error between DOE-2.1E simulation and ANN model
prediction was smaller than that from MLR models.

2. ANN sensitivity analysis was better than DSA because models
developed with ANN-derived important parameters more precisely predicted
building energy consumption, implying ANN sensitivity analysis more efficiently
evaluated the relative importance of input parameters.

The results of this project illustrated that ANN technique can be adopted to
perform sensitivity analysis and develop models to quantify the input-output
relationship in building energy systems. The results showed that the ANN
method had better performance than both DSA and MLR, which have been

extensively used in building thermal system studies.
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CHAPTER I
INTRODUCTION . -
- JEREONE Background
Sensitivity.kanalysis and Muitiple Linear Regressioﬁ (MLR) have been -
extensively used ic studying building therrpal systems (Katipamula, Reddy, & |
Claridge, 1998; Lam & Hui, 1996; Lomas & prel,‘ 1992).

_The aim of sensitivity analysis is to observe how the building energy
performance responds to the changes of design parameters and further evaluate
the relative importance of these parameters.- Sensitivity analysis is a general
ccncept and there is no formal or well-defined procedure for performing
sensitivity analysis (Lam & Hui, 1996). Different researchers use different ‘
apprroaches tc.examine the sensitivity of the output of a system to the changes of
input parameters. Lomas and Eppel (1992) reviewed and compared three

techniques, Differential Sensiti\)ity Anélysis (DSA), Monte Carlo Analysis (MCA),
| and St\ochAastic Sensitivity Analysis (SSA) for therm»al systems and ‘building :
energy sinﬁulat.ion. DSA is the most extensively used one in previous studies '
(Cammarata, Fich_era, & Marletta, 1993; Corson, 1992; Lam & Hui, 1996; Lomas
&’(Eppel, 1992), in which the ﬁrst-ofder differential sensitivitvy coefﬁcien‘t is
employed to assess the sensitivity of the outpvut with respect to input parameters,
which is also termed as influence coefficient (Spitler, Fisher, & Zietlow, 1989).
This method has been proved to be efficient to reveal relative contribution of

input parameters to the output (Lam & Hui, 1996).



However, sensitivity coefficient defined by the DSA method only reflects
the linear component ef the sensitivity of the output to the input parameters
studied. ' The nonlinear part is omitted and not addressed.. Actually, none of
metnods for sensitivity analysis so far can simultaneousl); (a) eorrectiy eccount
for no.nlinearity embedded in the input-output relationship of the system, and (b)
generate the sensitivity of the output to individuai input parameter changes.
MCA takes nonlinearity into acco‘\unt but individual sensitivities ean not be
obtained through it, while DSA and SSA generate individual sensitivities but they
assume the system is linear and the effects of input parameters are
superposable (Lomas & Eppel, 1992). |

Multiple Linear Regression (MLR) is another commoniy us\ied method in
building eneigy performance analysis in which linear mathematical models are
developed to represent the relationship between building energy consumption
and design*parameters. 'i'he reason of the popularity of MLR method is that it is
very_siinple to develop models through it, and the models derived are very easy
to be utiIized into practice compared to those building energy simulation ‘
programs such as DOE-2 (Br'onsoyn, Hinchey, Haberl, &O’Neal,:1992; Copeland,
‘ ~1983; Diamond & Hunn, 1981) or simpliﬁed systems modeling (Katipamula &
Claridge, 1993). MLR models have been used to analyze the energy
consumption in residentialkbuildings (FeIs,~ 1986), cornmercial buildings,_

(Abushakra, Zmeureanu, & Fazio, 1995; Boonyatikarn, 1982; Haberl & Claridge,
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1987; MacDonald, 1988; Mazzucchiv‘, 1986;:Sullivan & Nozaki, 1984), and even ‘a
military base (Leslie, Aveta, & Sliwinski, 1986). = = .~
// On the other hand, MLR has its own limitations.. One major limitation was
| the regression technique used by most investigators cited above was linear
regression, either single or multiple param_eters.'\' As described by Bouchlaghem
-~ and Letherman (1990), the thermal design of buiidings is a multi-variable
optimization problem with non-linear object function and linear constrains on the
variables, implying the rllonvlinear input-output connection in building energy
systems. The relationship between energy performancé and désign‘ vériébles in
buildingé is s0O complicated thatﬁ simple mathematical '}‘equations, like linear
functions, might not be adequate for its representation. Thérefore, the inpqt-
output relatio/nship might be distorted in MLR models since the nonlinearity in the
- system is completely omitted by this method.
In summary, due t6 the linear aésumption, both DSA and MLR can dﬁly '
_ partly or approximately describe nonlinear systems because only the properties
* _’ of lihear 'co,mpc.)nents within the system are correctly revealed.  Obviously,
nonlinear methods probably model building energy system more precisely and .
" help design‘buildings saving more energy yvhich is worthy both echomicaIIy and
environmentally. In this study, the artificial neural networks ’(ANN) technique,
which is good at nonlinear analysis, was applied to sensitivity analysis and -

‘ building energy consumption modeling. -



~A huge amount of studies in the past 20 years have demonstrated that the
artificial neural networks, especially multi-layer-forward neural networks with

supervised learning algorithms, could be successtIIy applied to a variety of

—

g

problems to extract the input-output relationship of ‘nonlinear systems (Hertz,
Krogh, & Palmer, 1991). It has also been used in the HVAC thermal dynamic
system identification (Teeter & Chow, 1998). |
Essentially, an artificial neural networks is an information processing
paradigm that is inspired by the way biological nervous systems procesa
information. Tne key element of this paradigm is the.novel structure, which is -
co\mpkosed of a large number of highly interconnected vprcracessing elements
(neurons) working in parallel to solve problems. ANN extractsinpUtfoutput;
relationship b/y'learning samples, involving adjustments of the strengths of
connections (weights) between neurons. vAftert_he learning (also called training),
the input-output r.elationsnip'will be stdrad as the weights of connections between
| neurons. - |
- Since Ai\iN is particularly good at extracting nonlinear input-output
relationship, it could ba able t taCkIe the problems existing in sensitivity analysis
through DSA and modeling through MLR. Through analyzing the structure of
weights after learning plenty of design parameters and ene‘rgy conéumption data
pairs, relative contributionkof input parameters to the output can be quantitatively
evaluated.. For senaitivity analysis, ANN method not only generates the

sensitivity of the output to individual input,parameter changes but also fully



. acco/unts for nonlinearity embedded in the input-output relationship of the
system. For building energy sonsumption modeling, through feeding new input
values into the networks after learning, the energy consumptnon could be -

, pred|cted Because ANN reveals both linear and nonhnear components of the

- relationship between input parameters and building energy consumption, the

"~ prediction of ANN models are expected to be more:precise than that of MLR

A

' models.

- Statement of Problem -

The intent of this study is to apply Artificial Neural N_etworks approach to
sensitivity analysis and prediction of the energy usage of an imaginary small
office building located in Waterloo, lowa, in order to (a) examine how the annual
- building energy consumption responds to’40’ building design parameters and
evaluate relative contributtc)ns of these parameters to building 'energy '

) perforrnance,v and (b) create ANN 'models to represent the relationship between
annual building energy usage and input parameters,' then use them to predict
building energy consumption ’under conditions which are not included in the -
database by which the model is developed. The objectives of the present.study
are: |

1. Using building simulation program DOE-2.1E to develop an imaginary
small office building located in lowa. Forty design factors from building toad,

HVAC systems, and HVAC refrigeration plant are selected as input parameters.




The buiIdving yearlyenergy consumption from the report of DOE-2.1E simulation
is used as output of the system.
2. Using DSA method to calcﬁlate three different forms of sensitivity.
- coefficients for all 40 input pafameters in order to étudy thé corresponding effects
on the simulation output after intr'oduci‘ng bgﬂurbatibns to the studied
- parameters. B’y this way, the relative importan¢e of input pararheters are
evaluated. _ o
3. Besides performed by DSA mketho’d, sensitivity analysis of building -
energy performance is also conducted by using ANN approach. After training a
two-layer feed-forward artiﬁcial neural networks with a number of input-output
data pairs created by DOE-2.1E simulations, thé sensitivify coefficients of all 40
parameters can be determined by the final values of weights connecting input,
output, and hidden units. Hobefully the respohse properties of}b‘uilding energy to
input pgrameters cah be révealed moré precisely compared to DSA in Step 2, |
becausé ANN approach is likely to be more powerful in extracting information
from nonlinear éystems than DSA based sensitivity coefficients which assume
- the system response is linear.

"4, Model the building using both MLR and ANN'methods.~ Input:
parameters usedfhere are 5,10, 0r 15 parameters with most importande
revealed by bbth DSAin S’_tep 2 and ANN sensit’ivity,, study in Step 3. Then
evaluate the goodness of linear and ANN models by;chp‘aring their powers in _

predicting building energy consumption under Conditions that are not used in_




modeling. ‘At the same time, by comparing the prediction powers of models with
different sets of input parameteis coming form.differenf sensitivity analysis
methods, it could be identiﬁed which sensitivity analysis method is more efficient
in assessing relative importance of parameters: |

: ResearchVvaotheses i

The questions that the present study pursue to fulfill are:
1. Does the neural networks reveal the sensitivity of building energy - -
performance to design parameters more efficiently than traditional differential

sensitivity analysis does? Can it reveal the relative contributions of input

parameters more precisely?

2. Compared with linear regression models, does ANN models have more
prediction povi/er? :
’ Thué, the equivalent hypothéses to answer these research questions are:
j. The neural netwc;rks is béiterythan DSA lmetho_ds to perform sensitivity |

analysis because it can more correctly evaluate the relative importance of

‘parameters fed into the system.

2. The neural networks model is stable enough to get acceptable solution.
Compared to linear regression model, it can predict building energy consumption
more precisely.. -

Assumptions

1. The database used for both linear regression and neural networks

training is generafted by DOE-2.1E simulation. This study assumes DOE-2.1E

-




can accurately simulate the thermalfresponse of the modeled building. Some

studies have shown that the prediction of DOE-2 simulation matched the

measured data pretty well (Lee, 1999; Sorrell, Luckenbach, & Phelps, 1985).
2. This study'assumes that the most current personal computers powered

by Pentium lll processors are fast enough to perform the training of neural

- networks modeling building energy system. ‘Although the artificial neural

networks have remarkable ability to derive meaning from complicated system,
- the complexity of its eomputation is still a main issue of this technique. =
| Limitetions k5
The limitations of this study is presented below:
1. Using DOE-2 to simulate building energy system is not easy becal{se
there are a huge amount, usually several hundreds, of input parameters which

need to be understood and carefully collected by users. The accuracy and

- [el[ability of the detabase used in this study largely depend on the skill of the

author. )
| : 2.&Due to. the Very rapid increase in training time requirements as the
number of parametervseincreases, enly a portion of design parameters (40) are
investigated in this study. The selectiqn of these parameters mostly depends on -

the author's understanding of the modeled building, which is not necessarily to be

coneistent with others.



CHAPTERIII
. REVIEW OF LITERATURE :

Heqting,,VentiIation and Air Conditioning'(HVAC) systems consume es
much as 50% (Kammers, 1994) or 30-70% (Swanson, 1993) of total buiIding
'ene_rgy budget, while buildings approximat.ely use 36% of the primary energy in
'tde United States today (Blum, 1994). Shoureshi (1993) suggested that a mere
A% improvemeht in energy efficiency of HVAC systems could save millions of
dollars annually at the national level.: Field surveys also indicated considerable
energy. waste when HAVC systems ere poorly operated and maintained
(Swanson, 1993). Therefore, it makes sense to consider new technologies to
increase HVAC system performance and efficiency thus save energy.

,Many methods of achieving energy savings have been proposed
accompanying with the development of HVAC indus}w, especially after the
impact of oil crisis and energy crunch in the\19703. Most of these building
energy coh‘servation technologies are based on the studies of how the energy
performance o;‘ buildings is affected by design and dperation factors of building
construction and HVAC systems. Developing building energy saving
technologies is,mostly equivalent to analyzing input—c\)utpdt relationship-of
‘buildin‘genergy system, where the input includes design and operation factors, -
the output is the energy consumption. Only Jafte’r characterizing input-output
relationship of the building energy system, the building can be designed more

energy-efficiently by selecting proper design and operation factors. Hence, the
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essential problem in developing building energy conservation technologies is to
analyze the input-output relationship df the building energy system.

There are a variety of empirical and theoretical methods by which the
input-output relationship of building energy system can be qualitatively or
quantitatively addressed. In this chapter, computer building energy simulation,

sensitivity analysis, and‘multiple regression techniques are reviewed in
succession. All these methods have been extensively applied in the study of
building thermal characteristics. Finally, the Artificial Neural Networks (ANN),
one of the artificial intelligence techniques, is introduced. '

Building Energy Simulation

, Nowadays,'with the aid of rapidly developing corhputer technologies and
well established building energy analysis methods, building design and operation
factdrs can be systematically examined with building energy simulation programs
(Hui &,Cheung, 1998). fypically,‘ after taking input information including local
weather, building design, air conditioning system, and operationz'strategy, the -
approach of "l;SPE" (Ioad-system-plant-eeonomics) is used by the dynamic
simulation programs to simulate t'he energy flow i‘n the building modeled (Hui &
Cheung, '1998); In the "load" stage; the cooling, heating,'an’d fresh air loads are
calculated based on thermal proberﬁes of the building and design criteria in order
to determine the‘ﬂow rate and the capacity of the airvfc_onditioning system
(McQuiston & Spitler, 1992). After calculafing the load of rooms, simulation

programs further e_stimate the energy consumption of the air-side and water-side
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systems in the "system" stage. ‘Finally, the annual energy consumption of the air
conditioning piant is détermined in the "plant" stage.: The energy donsumptibn of
theﬂplant is considered as the final energy usage of the building since it provides
all energy necessary for air conditioning of the rooms ahd the operation of - ..
equipment. The ehergy fed into the plant can be electricity; gas, oil, hot water,

- cold water, and others.  Sometimes, the energy budget is calculated according to
the local energy prices by carrying out "economics” analysis after plant
simulation. -

The main difference of building energy simulation from other modeling
approaches like sensitivity analysis or regression analysis is building energy
simulation uses physicél thermal models to ;simulate details of building thqrmal
system whilfa the others develop simple‘expressions describing the relaﬁonship
between design parameters and energy consumption which do not account for -
the detail§ 'of‘thermal flow in the building.

| Tﬁere are many different types of computer software available for building
energy simulétion. BLAST (Building Loads Analysis and System
Thermodynamics) and DOE are milestones in the‘ history of computer building
energy simﬁlafion.- Théy\were developed and released in late 1970s and early
1980s b); the U.S. Army Construction Engineering Research Laboratory :
(USACERL) and the Lawrence Berkeley National Laboratdry (http://www.Ibl.gov),
respectively.. They were develdped for design engineers or architects for sizing

appropriate HVAC equipment, developing retrofit studies, and optimizing energy

11



performance.’ However, they were usually used for research purpose in the past’
because they are so sophisticated and complicated (Hui & Cheung, 1‘998)'. In
recent years, they are beginning to be adopted by average building designers
'alon'g with the rapid development of computer technology. In April 2001; a new-
generation building energy simulation program, EnergyPlus 1.0 was released.

~ through the Lawrence Berkeley National Laboratory. EnergyPlus 1.0 inherits
most popular features and capabilities of BLAST and DOE-2. It can be- ‘

considered as a hybrid of BLAST and DOE-2.

Beside DOE and BLAST, there are some simulation programs developed '

by commercial oompanies such as\HAP developed by Carrier Corporation and -
TRACE developed by Trane Company. Commercial simulation software are
usually easier to use and more accepted by engineers. However, the calculation

usually is simplified beceuse of the commeroial background of developers (Hui &
Cheu‘ng, 1998). | | ’ »

In vthis study, building energy simulation program DOE-2.‘1E is used to
generate datebase for sensitivitv'analysis, rnodel development and testing.. Then
the underlying question is how well the DOE program predicts actual energy k=
usage in a building. As part of the DOE-2 Verification Project conducted bvthe
Los Alamos Scientiﬁ,c'Laboratory, Diamond and Hunn (1981) compared DOE-2
simulations with measured utility data for a set of seven existing commercial
buildings of various types in a variety of climate zones. Their results revealed,

that there was a standard deviation of less than 8% and:a maximurn difference of

12



12% between predicted and measured data fo\r annual total energy.eudget; In
the validation study io determine the accuracy of three hourly simulation
programs, DOE-2.‘1.B, EMPS\\2.1, and TRAP84, Sorrell at al. (1985) concluded
the accuracy in predicting absolute energy consumptioﬁ was 5% to 20% fora

one to three day/period, while generally showing b‘etter agreement for a longer

~ time period. In Lee's validation study (1999), DOE72.1 E showed very good

accuracy in predicting cooling and heating energy, with meen errors of 1.9% and

-6.3%, respectively. All these validation studiee suggest that DOE has fairly

satisfactory aceuracy in the prediction of building energy consumption.

Sensitivity Analysis of Building Energy Performance

- When performing building energy simulations, energy consumption ’

- changes from certain input variables are more significant than those from others,

implying these selected inputs should be given perticular attention during
modeling (Corson, 1992) since they are more important from both technical and
economic points of view. Hence, they should be designed with utmost care if

optimization of the system performance is to be achieved. A great deal of .

- engineering work is devoted to testing the sensitivity of systems to input variables

(Deif, 1986). 'These studies are collectively called sensitivity enalysis and involve
a range of different analytical methods. |

= Sensitivity theory has been used for assessing t‘he thermal response of
buildings and their energy and Ioad;characteristics (Athienitis, 1989; Buchberg,

1969, 1971; Cammarata et al., 1993; Lam & Hui, 1996; Lomas & Eppel, 1992).

13



The aim of sensitivity anavlysis is to eQaante‘ the Varjation of the thermél load due
td a ﬂuctuation in a given design parameter around its normal value (Cammarata
etal., 1993). Particularly, Lam and Hui~(1'996) examined the sensitivity of energy
performance of office buildings in Hong Kong‘. They anélyzed how the annual
energy consumption and peak design loads of the model 5ui|ding responded to
- the modification of 60 design parameters, including coefﬂcienté of materials
properties, design of bdilding envelop, and selected HVAC systems, from which
12 important parameters were yielded. Obviously, if the relationships and
relative importance of p’érameters’ used in desig‘n are well understood, optimal
building energy pe‘rfor'mance‘could be reached through proper selection of -
certain design variables and conditionsi .

_HoWe;vér, Sensitivity analysis is a general concept and there is no formal
or well-defined procedures for performing sensiti\)ity analysis (Lam & Hui, 1996).
In brief, sensitivity anayly'sis could be considered as quantitatively comparing the
chaﬁngeshvin output with the changes in input. Thus, itis an "input-output analysis"
of the simulat-ion system (Corson, 1992). Sensitivity analysis can be conducted
on input parameters one by one or o‘n several simultaneously. If input
parameters are analyzed separatevl‘y, it has t6 be assumed that the interactions
between the inputs can be omitted, i.e., thé effects of the inputs are -
superposéble. | |

Different researchers use different approaches to examine the sensitivity

of the output of a system to the changes of input parameters. - The most common

&
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sensitivity analysié is sample-based inwhich the model is ex’eduied repeatedly
for combinations of valties sampled.frorri the specific distribution of the input
parameters.. I‘n general,,fc;)llowing.sltep are involved: . - |
1. Specify the output fuhction and select the input factors of interest.
- 2. Assign a distribution to the selected fai:tors.f R
:3. Randomly generate input combinations within the distribution.
- 4, Evaluate the modeyl and compute the distribution of the output.

5. Select a method for assessing the influence or relative importance of -
each factor on the output function.

In engineering economics, sensitivity analysis measures the economic
impact frorp alternativé values of uncertain variables that affect the economics of
the prpject gnd the results can ‘be presented in text, tables, or graphs (Marshall,
1996). i=or thermal systems and building energy simulation, Lomas and Eppel
(1992) reviewed a\nd coinpared threé, techniques, Differential Senéitivity Analysis
(DSA), Monte Carlz) 'Aﬁalysis (MCA), and Stochastic Sensitivity Analysis (SSA).
DSA involVes; varying just one input for each simulation while the remaining - -

;.i'nputs stay fixed at their mostly likely "base case" values. The changes in the
output (y) are therefore »a direct measure of the effect of the change made in the
singleinpﬁt parameter (i). ' The valkue of Ay/Ai cén be considered as the first-order
differential sensitivity of the outpui y with respect to the input i. MCA method is a
kind of multivariate sensitivity analysis in which all input parameters are

simultaneously perturbed thus the total uncertainty in the output can be’ .



evaanted. The advantage of MCAVtéchnique is it fully accounts for the

interactidn between the input parameters. However, the sensitivity for individual

parameter can not be derived. SSA is a relatively new technique in which all -

_ parameters are varied simultaneously as the simulation progresses, typically at

every time-step. -This is very different from DSA and MCA in which the uncertain

' parameters are varied before the simulation then held constant for the duration of

the simulation. SSA, like DSA, also generates the sensitivity of the output to the

individual parameter uncertainties. The main attraction of SSA is that information

about the time-delay response of the outputs, due toV the variations in.the inputs,
could be obtained. However, SSA is rarely used because the: implementation is
very difficult which needs access to the simulation program to input stocha'stic
mformatlon of |nput parameters.

AIthough there are plenty of different methods for sensitivity analysns DSA
is the most extensively used one‘in bU|Id|ng energy studies. In previous studies,
most re_searchers_(Cammarata et al., 1993; Corson, 1992; Lam & Hui, 1996;

Lomas & Eppel, 1992) employed the first-orderdifferenti.al sensitivity coefficients

‘t'o mea'sure the sensitivity of the 6utput with respect to input parameters, which

also has been termed as influence coefficient (Spitler etal.,, 1989). If there are
more than two perturbations used for the input parameter examined, the slope of
the regression Straight line, rather than Ay/Ai, could be used to determine the

sensitivity of building energy performance with respect to a specific designor - -



input paranieter. : If)SA method has been proved to be efficient to reveal relative
contribution of input parameters to the output (Lam & Hui, 1996).
However, ihﬂuence coefﬁt:ient defined by the DSA method only reflects -
<

the linear component of the sensitivity of output to the input parameters studied.

Itis the “first order sensitivity." ,Obviously_, this approach assumes that the

" relationship between the output and input parameters is linear. Thus, it is a

linear estimate of sensitivity of building energy usage, and the nonlinear part of
the sensitivity of the output is not reflected efficiently. Iri the present study,
sen‘sitivity coefficients derived from DSA are used to’be compared with the -
sensitivity coefficient yielded from artificial neural networks method.

Modeling Buildings Using Multiple Regression

¥

- Another popular approach in building energy investigation is multiple linear

\regrevssion (MLR), in which energy equations are derived from observed or
corhputer-generatéd data to express the relationship between energy
const\imp‘tion ofkbuildin_gs and design parameters. Energy equations could be
utilized in pretiicting energy usage and determining retrofit savings. Régréssion
analysis modéls are simple to develop and easy to use compared tothose
building energy simulation programs such as DOE-2 (Brt)nson et al., 1992;
Copeland, 1983; Diamond & Hunn, 1981) anci simpliﬁed systems modeling

(Katipamula & Claridge, 1993). The input database for regression analysis can

- be created by measured data frotn real buildings (Katipamula et al., 1998), or by

7
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a series of simulations using computer simulation programs like DOE-2 (Lam,
Hui, & Chan, 1997; Sullivan & Nozaki, 1984). .-

"~ Regression models have been used to analyze the energy consumption in
residential buildings (Fels, 1986),' commercial buildings (Abushakra etal., 1995,
Boonyatikarn, 1982; Haberl & Claridge, 19_87; MacDonald, 1988; Mazzucchi,
1986; Sullivan & Nozaki, 1984), and even a military base (Leslie et al., 1986).
The most remarkable advantage of regression analysis is its simplicity, both in
model developing and application. For model developing, there are a lot of
computer software can be used for' conducting regression analysis, such as
statistics package‘of SPSS produced by the SPSS Incorporated and statistics

" toolbox of Matlab produced bv the MathWorks. Moreover, the procedure of
energy consomption predictionusing equations derived by regression analysis is
very easy and fast because regression models only contain a small number of |

4 parameters, not like other hourlycomputer simulation programs such as BLAST,

»DOE-2‘, and TRACE which are too complicated, time-consuming and_costly (Lam
et al., 1997), usually containing hundreds of even more input parameters. -

Although regression approachk has been extensively used for building
fenergyconsumption analysis, it has its own limitations. One major I'i)mitation of

- previous studies is the regression technique used by most investigators cited -
above was linear regression, either single or multiple parameters. However, for
building systems, the relationship between energy performance and design .

variables is so complicated tnat simpl‘e mathematical relationships, like linear
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functions, are not adequatkefor its representation. Bouchlaghem and Letherman

(1990) described the thermal design of buildings as a multi-variable optimization
problem with non-lihear object function with linear constrains ﬂon the variables.
Some researchers have tried to utiliée nonlinear modelslto analyze building -
energy perfdrmahce./ For example, Lam and his colieagues (1997) developed
“energy eqﬁations through both linear and no‘nlinear multivariable regréssion to
predict bUiIdiﬁg energy consumption.. However, the form of their nonlinear
eqUatior;s were so specific that it rerﬁains unknown if they can be generalized to
energy consumption studies for different buildings under different conditions.

- In summary, due to the nonlinear nature of the building energy"system, ,
sensiti\;ity analysis and modeling through linear mefhods éan only partly or
approxjmate/ly describe the system because only the properties of linear
components ih the system are correctly revealed. Obviously, nonlinear methods
coulc‘i{model building enérgy system more precisely and help design buildings
saving mbre energy which is worthy both economically and environmentally.
Nevertheless,.it is not easy to develop nonlinear models for a complex system
since there is no general form of nonlinear equatiovn and no general solution to
nonlinear systems. Usually, the rﬁethodé researchers model n‘onlinea‘rsystems ‘
are to transform nonlinear equations to linear or treét them as linéar equations by

simplifying them.
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‘ ArtificialNeural'Networks and Nonlinear Systems
In recent years, along with the rapid develdpment in computer technology
and remarkable progress in neurobiology, the Artificial Néural Networks (ANN), a
kind of artificial intelligence technique which could be apblied to an increased
number of real-world problems of high complexity, attracts a lot of researches -
“after a long period of frustratioh and disrepute from the late 1960s to the late
1970s. ‘A huge a’mouknt 6f studies in past 20 years have shown that the artificial
neural networks, especially multi-layer-forward neural networks with supervised -
learning algorithm‘s, have been successfully applied to a variety of problems to -
extract the input-output relationship of nonIineér syétems (Hertz et al., 1991). It
has also been used in the HVAC thermal dynamic system i‘dentification (Tgeter &
~ Chow, 19‘98)/. S i |
Basically, an artificial neural network is‘an’k information processing

paradjgm that is ihspired Qby the way biological nervous syste/ms, éuch as the
humaﬁ bréin, process information. The key element of this pa\r”adigm is the novel
structure, whi(;h is coAmposed Qfa large number dfhighly i’nterconnected
processing elke‘menrts (neurons) :wldrkin‘g |n parallel ;to solve_sp‘eqiﬁc problems.
Figure 1 shdws the architecture of a two-layer (input-hidden vlaye»r and hidden-
output layer) feed-forward artificial neural networks. Each neuron, denoted by N
in Figure 1, computes a weighted sum of its inputs, then outputs this sum after a
transformation which usually is a pure linear or sigmoid (SQshaped) function

(Hertz et al., 1991). ANN extracts input-output relationship by learning samples,
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In this study, the ANN technique is used both in sensitivity anaIysis and
building energy system modeling. The main problem of sensitivity analysis
techniques used in previous studies is none of them could (a) correctly account
for nonlinearity embedded in the input-output reiationship', and (p) generate the
sensitivity of the output to individual input_parameter changes. DSA and SSA
" generate individual sensitivities but they assume the system is linear and
superposable. MCA takes nonlinearity into accoont but indiViduaI sensitivities
can not be obtained through it. There is no question that ANN can efficiently
extract input-output relationships from nonlinear systems because it has been
mathematically proved that ANN shown in Figure 1 witn one hidden layer

activateyd by sigmoid function is enough to approximate any continuous function |
(Cybenko, 1989; Hornik, Stinchc}ombe, & White, 1989). On the other hand, the
relative'importance'of input parameters could be evaluated by the strength of
weights connecting eiements in the neural networks. Therefore, ANN might be a
good tecnnique for sensitivity analysis, not only generating individual sensitivities
but also getting rid of linearity assumption occurring in DSA and SSA
‘approaches. Moreover, building energy models developed by the ANN
technique are vexpeCted to be better than linear regression models because ANN
can extract nonlinear components in thereiationship between design parameters

and building energy consumption which are omitted by linear regression models.



CHAPTERI -
- METHODOLOGY

Overview of the Experimental Design

The Artificial Neural Networks (ANN) was appliedk to perform sensitivity
analysis and develop energy consumption models of buildings in the present
~study. An imaginary small office buiiding located in Waterloo, northeast lowa
was used as the model building. Compared to real buildings, imaginary buildings
have several advantages in quantitative analysis of building energy systems:

1. Real buildings, such as residential houses, restaurants, and office
: b..ui'ldings, are designed for specific purposes while an imaginary building can be
configured with design parameters common to most buildings in a specific
geographica/l area. SiJch a building could be considered as a typical building and
research results from it could be generalized to more applications ttian those
from speciﬂcally designeri real buildinigs." |

"  2. i’he design parameters of an imaginary building can be arbitrarily varied
with computer modeling programs so that a systematic parametric study can be
‘conducted. However, the features of a real building can not be changed
conveniently to study its thermal properties once itis built.

3. A complicated and expensive measurement system has to be employed
to monitor the weather, parameters to be studied,- and energy consurnption, if a
real building is used. Apparently, modeling imaginary buildings on computers is

more economical and efficient.



Building en'ergy consump’tio\,n is determined by the weather, buildiﬁg load,
HVAC system, and refrigeration plant. In this study, the wéathef condition was
considered to be fixed, using the typical year weather file in TMY2 format for
- Waterloo in lowa (National Renewable Energy Laborafdry, 1995). Load,’system,

‘and plant were parameterized into 40 input variables. Each parameter had a
-base case reference value, a minimum, and a maximum value, selected from
common engineering and design practice.- The building annual energy .
consumptiph was investigatéd as the output of the system, which could be
considered as the final energy end-use of the building.

- After formulating the base case reference building and selecting -
parameters to be studied, a series of compufer experiments as follows were
condu}cteyd: |

1. Simulatéd the base case building with ‘computer simulétion program
DOE‘-2.1E‘(Lawrence Bérkeley Laboratory, 1993). ”

2 Introduced perturbations to the selected parafneters near thgir base

case values, then studied the corresponding effects of the perturbations on

simulation outputs. Each time ohly one pafameter was varied while ali the others

fixed.
3. Calculated three different forms of sensitivity coefficients for each
parameter using Differential Sensitivity Analysis (DSA) technique (Lomas &

Eppel, 1992).
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4. Generated 1024 input-output data pairs using DOE-2.1E with all 40

input parameters randomly distributed from their minimum to maximum values. .

After training a two-layer feed-forward ANN with these data pairs, the sensitivity

coefficients of input parameters were yielded by the weights of ANN.

5. Compared sensitivity coefficients derived from DSA and ANN methods

~ in order to determine important parameters. - Important parameters have larger

sensitivity coefficients and contribute more to the variation of the building energy
consumption than those less important parameters. - -

6. Used bbth Multiple Linear Regression (MLR) and ANN techniques fo‘
develop models representing the relationship between design parameters and
building energy usage. Five, 10, or 15 imbortant parametérs ranked by
sensitivvity cgefﬁcients were used in modeling.

7. Compared prediction accuracy of regression mbdel and ANN model.
The accuracy of predicti;m was measured by Mean‘ Absolute Error (MAE) and
Root \Mean Square Error (RMSE) of model‘ predicted enefgy usvagewi’th respect
to DOE-2.1E simufation results.

8. By comparing models developed with different sets of important
parameters coming} from different sensitivity coefficients, the efﬁciericies of both

DSA and ANN sensitivity analysis methods were evaluated. -

Model Building - N
The model! building used in this study was an imaginary office building

located in Waterloo, lowa. The geographical location of Waterloo is in 42.55
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degrees north latitude and 92.4 degrees west longitude, and an elevation of
869.42 feet above sea level. The model building is a small single-story building
with a total of 2429.75 ft? of floor area and 14 feet of bu‘ilding height.

The main door of the burIdlng faces true south in base case although the
azrmuth of the burldrng isa varrable in parametric study The burldrng consrsts of
~ five office rooms, a meeting room, a coprer room, two restrooms a Iobby for
receptron, and two corr|dors, which are divided into 12 cub|c spaces for modeling
convenience in DOE-2.1E. Figure 2 shows the building layout and Table 1
summarizes tvhe information of all rooms. Dotted lines in Figure 2 splits the
continuous space including the lobby and corridors into t(hree_cubicspaces ‘
because cubic spaces are easier to be described than irregular spaces in DOE-
21E Buildin‘g. Description Language (BDL; ,Lawrence Berkeley Laboratory, 1993).
Room codes in Table 1 Vare identifiers of spaces used in DOE-2.1E simulation
input‘ﬁles. The building ‘is designed to be single-zone. All rooms use ceiting
plenums vto return air from individual space to the central Air Handling Unit (AHU)
of the system: All conditioned spaces share a common plenum space between
| ceiling and roof. |
| The burldrng has a flat roof whrch is composed of 2 |nch heavy welght
concrete, 4 inch horlzontal air space 2 inch heavy werght concrete aga|n 4 inch
msul{atlon,and 1 |nch washed river rock, fromlnsrdetooutsrde.‘» Between roof

and ceiling is the plenum with 5.5 inch of height. CeiI'ing is 8.5 inch high with



average U-value (heat transmission coefficient) 0.317. The floor is'4 inch:

concrete covered by carpet with average U-value 0.609.
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~Figure 2. Layout of the model building.

Table 1 i ,
Room Information of the Model Building
' Rqom code Description Width (ft) - Depth (ft) hgggltn (%t) hZ:gErE?t)

LOBBY Lobby 15.25 21.25 8.5 55
OFF-SW " - Office south west - 13.5 14.25 85, .55
OFF-SM Office south middle 135 - 1425 85 5.5
OFF-SE . . Office south east 165 .. 14.25 -85 55
COPY-R Copier room - 9.25 . .14.25 85 . 5.5
COR-MAIN . Corridor main 53.75 . . 65 . 85 ..,585
MEET-R ‘Meeting room 25.25 1525 =~ 8.5 55
OFF-NW Office north west 13.5 16256 8.5 5.5
OFF-NE " " Office north east 13.5° 15625~ = 85 55
COR-REST - Corridor next to restrooms 45 1575 8.5 8.5
MEN - Men's restroom 10.25 7.5 8.5 55
WOMEN Women's restroom 7.25 8.5 5.5

10.25



The exterior walls are horizontally divided into two parts by the ceiling,
Iower part and hlgher part. Condltioned spaces of the burldlng are surrounded by
lower exterior walls and the plenum space is surrounded by the higher exterior
walls. The construct|on matenals Iayers of exterior walls are similar. From inside
to outside, all exterlor walls are composed of 5/8 inch’ gypsum board, 3.5 |nch
~ metal stud framing, 3/4 inch vertical air space, 1 inch rigid insulatio‘n’, and a layer
of 4 inch o 6 inch heavy concrete. The exterior wallsexcept those of restrooms
have 5.5 feet high windows located 3.5 feet above the floor IeveI Each restroom
has a smaII wmdow of 1.5 feet helght and 2 feet W|dth

The buudlng does not have any external shading device. Solar
absorptances of the exterior walls and roof are 0.65 and 0.29, respectively.’The
inside ﬁlm resistance of waIIs and roof, which is cornbined convective and |
radiative air film-resistance for the inside wall surface, is 0.68. Table 2 describes
ethlckness and thermal propertles of matenals used for the construction layers.

The materials data in this study was mainly coming from Lee s doctoral
dissertation (Lee, 1999). In his study, the Energy ResourceStation Iocated on
the campus of the Des IVioines Area COmrnunity College, ‘Iowa was used as test
' burldlng The Energy Resource Statlon is owned and operated by the Iowa
Energy Center and specﬁ' caily bu1|t for bu1|d|ng energy research Therefore the
bu1]d|ng envelop shouId be representatlve of Iowa state In present study, the
constructlon layers of the model burldlng were very s1m|lar to those of the Energy

Resource Station used in Lee's d|ssertat|on
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Table 2
Thermal Properties of Constructlon Lavers
Layer code gﬂzte Descnptlon T K D Cp R
LAY-R1 Inside surface :
CCo02 2 in heavy weight concrete 2-..0.7576 140 02 022
~ AL23 4 inch horizontal air space 4 0.87
CCO02 - .° 2in heavy weight concrete 2..07576 140 02 0.22.
Q-vB1* " Vapor barrier -~ - L ' 0.06
o , IN47 4 in insulation 4 0.0133 1.5 0.38 25.06
e ' - ARO2 Single-ply membrane © 70 035 0.44
RG02 Washed river rock 1 0834 55 04 041
_ Outside surface B
LAY-WB1 - .- Inside surface S : v A
v GP02 5/8 in gypsum board - 0.625 0.0926 50 0.2 0.56
Q-vB1* Vapor barrier . . . .. 006
Q-IN1* Metal stud framing w/ R13 batt 35 0025 06 0.2 1296
- AL11 ~ 3/4in vertical airspace~ 0.75 . - . 0.9
‘ IN43 1 in rigid insulation 1 0.0133 15 038 6.26
CC03 = 4inpre-cast concrete 4 07576 140 0.2 044
- Outside surface Ty
TLAY-WT1 Inside surface R B
. GP02 5/8 in gypsum board 0.625-0.0926 50 0.2 0.56
Q-IN1* " "Metal stud framingw/R13batt 3.5 0.025 0.6 02 1296
AL 3/4 in vertical air space 0.75 0.9
IN43 1 in rigid insulation .1 .-0.0133 15 038 6.26
< v .. CCo4 6 in pre-cast concrete 6 07576 140 0.2 066
e - Outside surface ' ' '
LAY-P1 ) Inside surface ‘ o
o GPO2 0.625 in gypsum board 0.625 0.0926 50 - 0.2 0.56
IN13 Metalstud framing with 35 00225 3 033 1296

. fiberglass. .- - , : : B
GP02 ~0.625 in gypsum board 0.625 0.0926 50 0 2 0.56
: Outside surface .
Note _T: thickness, inch; K: conductivity, Btu/hr—ft-°F D: density, Ib/ft2
Cp: specific heat, Btu/lb-°F; R: resistance, hr-ft>~°F/Btu; o «
LAY-R1: layer for roof; LAY-WB1: layer for lower exterior walls beIow celllng,
LAY-WTH1: layer for higher exterior walls above ceiling;
LAY-P1: layer for interior walls separating rooms.
Material codes without asterisks are standard materials defined in DOE-2.1E
material library. The author defined those materials with asterisks.




Since the model building is tmaginary, the design parameters could be

- very flexible. Two HVAC systems, constant-VOlume reheat fan system (RHFS)
and variable-volume system with optional reheat (VAVS), were extensively
modeled on model building. Fourteen system factprs were parameteriZed and
studied. Tne‘HVAC pIant was relatively simple in this stddy, \which included one

DN

~ hermetic centrifugal compression chiller and one electric hot-water boiler.

Development of DOE-2.1E‘ Input Files ..

Before performing model bui‘Iding simulation with DOE-2.1E, it is essential
to determinewhat input parameters are to be stUdied. In this study, total 40
parameters which represented a var|ety of different factors in model building
design were prepared for analysis. AII these parameters are listed in Table 3 and
categprrzed(rnto three main groups as burIdlng load, HVAC systems, and HVAC
refrigeration plant.’ H

: Selecting and det;lnin“gﬂthe inpdt parameters is often a cpmplicated task

that reqdires good engineering judgement and knowledge of the simulation
system. Breakdown o,fthe parameters was worked out according to the buiIding
despription language (BDL) of the DOE-2.1E program so that maximdm
effectiveness‘and c‘ompatibility could be achieved. |

- After determrnrng the deS|gn variables to be studied, a base case value
and a range of different vaIues termed as perturbatlons were asslgned to each
of the input parameters The base case vaIue is most likely value in practlce and

in this study it was used as a reference in sensrtrvrty analysrs to calculate
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sensitivity coefficients. The perturpatioh range was used to limit the variation of

input parameters when generating database for reéression and ANN modeling.

Table 3
Studied Input Parameters

" Parameter Parameter - ' -

index code Description Base case Unit Minimum Maximum
“Load . . . i S : T
1 L-BLA Building azimuth 0 Degree 0 45
2  L-WsC Window shading coefficient ' 06. - -0 1
3 L-WGC " Window glass conductance : 1.0 BtuHr-F&F 0.1 16
4 L-WNP Window number of panes 2 1 3
5 - L-SAT - Space air temperature S 70 s F i 64 76
6 LIFR Infiltration rate 0.6 ACMHr 0 1.2
7 L-EPL Equipment load 20 WIFE 1 3
-8 LLTL Lighting load ] CWIFE 05" 25
9 L-LTT ‘Lighting type SUS-FLUOR
. 10 L-OPD Occupant density 0.02 - Person/Ft*. - 0.0025 - = 0.04
. System ' : ' :
11 S-SYT System type ‘ VAVS :
12 S-CSP Cooling set point S0 T2 . .66 . 76
13 S-HSP Heating set point 68 F 64 74
14 . 8-TST Thermostat type - PROPORTIONAL .
5., SJIR Throttling range 2 F 025 4
16’ - S-OAF Outdoor air flow rate 19 ' CFM/Person 1 AN
17 - 8-OAC ~.Outdoor air contro! - TEMP . : : )
18 . S-FDT " Fanairdelta T 6 F 0 8
19 S-FPC . Fan power consgmpt?on 0.002 KW/CFM  0.00025 0.004
20, S-FCT .| - Fan control INLET ' s )
21 S-FMP Fan motor placement IN-AIRFLOW
22 - S-FPM Fan placement DRAW-THROUGH
23 S-RDT Reheatdelta T 55 F 45 65
24 S-MCR Minimum CFM ratio 0.2 0.1 0.5
Plant : S : )
25 P-CST Chilled water supply T 42 F 38 48
26 - P-CTR Chilled water throttling range - - 3.5 : F .15 4.5
27 P-CMT _ Chilled water minimum entering air T 65 ‘ F ' 55 70
28 P-CCP - Chilled water condenser power ratio 0.06 - - 0.02 0.1
29 . .- P-CGB . Chilled water hot gas bypass PLR 05 . Sl 020 0.7
30 P-CDT ;Chilled water design delta T ‘9 F 7 13
3 P-CPH | Chilled water pump head 60 - Ft 20 100
32 P-CIE ' Chilled water pump impeller efficiency 0.8 - 0.6 0.9
33 P-CPL - - Chilled water fraction of pump loss 0.01 0.005 0.02
.34 .. -P-CME ' Chilled water pump motor efficiency 0.85. 0.8 0.95
35 P-HBL Hot water boiler loss 0.04 0.005 0.08
36 P-HDT Hot water design delta T 30 - ~-F 10 50
37 P-HPH Hot water pump head 60 Ft 20 100
38 P-HIE Hot water pump impeller efficiency 0.8 ' 0.6 0.9
39 P-HPL - Hot water fraction of pump loss 2001 0.005 = . 0.02
40 P-HME 0.85 0.8 0.95

" Hot water pump motor efficiency
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. The base case vailue of a para'mketer roughly:sits in the{middle in the whole range
of this parameter; The selecting of the range of ’perturbations ofa pérameter isa
subjective task, mostly from engineering and design practice. The parameter
ranges in this study were roughly estimated on the basié of values in the

literature (Lam & Hui, 1996), DOE-2.1E ku_ser’s manuals (Lawrence Berkeley

' Laboratory, 1993), and dyesign practice of the author. The base case value,
minimum and maximum values of all input paia’meters are‘ listed in Table 3.

After all parameters to be studied were determined, input files for
simulation were genérated tiien submitted to DOE-2.1E program. One set of
parémeter values was used in one simulation and the annual model building
energy consumption was extracted from output files of the simulation program.
‘Those_parérpeté‘\rs Which were not studied in this study were fixed in default
values set by DOE-2.1E program. DOE-2.1E input files were written in Building
Desc‘ription' Language (BbL); TheinbUt file for base case model building is
prese\nted in Appendix A,

Differential Sensitivity Coefficients

Differential Sensitivity Anaiysis‘,(DSA) technique was used‘_in‘ this study to
)iield‘ sensiti\v(it‘y coéfﬁcie‘nté in drdér to meas‘ure‘ how much the modél building
ene’rgy‘ccinsumption respoiided to the changes of different input ‘barameters.
Sensitivity coefficients were aisq used _to rank"the relativé imbortancg of in/put
parametersv. DSA techniqueinvoiyeysk,varyirig just one inpu.t for each simulation

whilst the remaining inputs stay fixed at their most likely “base case” values



(Lomas & Eppel, 19‘9.2).‘ lr; this study, the procedure of sensitivity analysis of a
specific parameter was conducted as follows: |

1. Take a parameter to be analyzed.

2. Select several values as input data set within tee range of the

parameter. The base case value was included.
| 3. Generate DOE-2.1E input files. Each input file contained one valuel
selected above. All fhe other parameters were ﬁXed to be base case values.
- 4, Run simulation for all input files.

5. Analyze simulation output files to get building energy consumption
under all values determined in Step 2. One energy consumption paired with one
input parameter value. :

6. Do‘a linear regression between input data set and corresponding .
energy consumption values using least squares method (Khazanie, 1986) in

order to'get the slope of the regressidn straight line.

7. Calculate sensitivity coefficients in forms in Table 4.

Table 4 : o
Definitions of Differential Sensitivity Coefficients
Sensitivity PR ’ ' B e
Coefficients Description : Definition
"'8C1  Slope of linear regression line  dy/dx
'SC2  Normalized sensitivity coefficient ( dy/ dx)/ ( }néan()z) /meah(x) )

~ 'SC3 - " Normalized sensitivity coefficient  (dy/dx )/ ( base(y) / base(x) )
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- Three forms of sensitivity coefficients, denoted as SC1, SC2, and SC3,
were used to evaluate the,sensttivity of the‘kan.nual,energy performance of the:
building to input parameters. Table 4 lists all of them, where x is the input
parameter studied, y is corresponding energy consumptton from DOE-2.1E

simulation, dy / dx is the slope of linear regression line, base(y) is the energy

' consumption when the input parameter is set to be base case value. These

forms of sensitivity coefficients have been wholly or partly applied in previous
studies (Cammarata et al., 1993; Cohsbn, 1992; Lam & Hui, 1996; Lomas &
Eppel, 1992). | |

Artiﬁcial‘ Neural Networks (ANN) Method

The Artificial Neural Networks (ANN) have been successfully applied to a
variety of prgblems to extract input-output relationship of nonlinear systems. In
this study, two-layer feed-forward neural networks were trained to extract the
relationship between degig/h parametersand building annual energy

consumption. The architecture of the ANN used is shown in Figure 3. The

- networks takes parameters as input and outputs the building annual energy

‘consumption of the mode! building.

The neural networks is composed of two layers: layer kfrom input to hidden
units and tayer from hidden units to output. Wi is the weight from input unit k‘ to |
hidden neuron j; Wj is the weight from hidden neuron j to Qutput neuron .
Structures surrounded by dottedvline boxes are neurons. Each neuron takes a

weighted ‘s"unv"lifr'o'rh o_ther neurons or input vector, then outputs it after a
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transformation by an actiVation function. In Figure 3, hidden units takes a

8 welghted sum from |nput parameters then makes the output after a hyperbolic
tangent transformatlon tanh (x) (e e )/ (e te ) whlle output unit O takes
input from hidden unlts then outputs the annual energy consumption after a pure

linear transformation f (x) = x.

ij

3;;Hf\ v

S g \ w7

Vé:k | . ) :@—»/——»O.
. — iy

. ;z:\/ f// | , !
- g »
B |

Figure 3. Architecture of ttte two-layer neural networks.

‘Given an input vectotcfk,‘hiddeh unit j receives a net input
h; —Z ké:k - (3.1)
and produces output

V= i) - gl<z . (3.2)

Output unit O thus receives



z z gl(z kfk o (33)

and produces the ﬁnal output

0,=8:()= gz(z ,,,) gz(z g,<z k«:k)) (34)

Because the output vector of the neural networks used in this study has only one

element, annual energy usage, i =1, thus

O=g,(h)= gzz 1 1) gz(zWUgl(z kfk)) V (3.5)

Suppose the output of DOE-2.1 E srmulatlon with the lnput parameter values &; is

¢, the error measure or cost function of the neural networks

E[W]=%[§ -of | 68

now becomes

E[W]——{{ gz(ZWl,gl(Z ké,,))} R - (37)

The abllrty of neural networks of extractlng |nput-output reIatlonshlp comes from
|ts competence to learn from a tra|n|ng set of mput-output palrs {&%, ; } in order
to derrve the mput-output reIatlonshlp The procedure of Iearnlng is aIso caIled

-

tra|n|ng For a set of input-output palrs the cost functlon becomes

E[W]:—Z[g gz(ZWl,gl(Z HEN | (3.8)

The goal of training is to compare the outputs of the network with known target

output’£* then minimize cost function E/#] by adjusting weights connecting units
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in the network through specific algorithms. Because the target outputs ¢* are
used in the training, this learning procedure is supervised learning. -

The most challenging part of the neural networks technique is to develop a

37

fast algorithm of weight edjustment. The baCk-propagation algorithm is central to

much work on learning in neural netwdrks (Hertz et al:, 1991). The algorithm
‘ gives a prescription for changing the weights in any. feed-forward networks to
learn a training set of input-output pairs.: The basis of the back-propagation
algorithm is simply gradient decent weight updating rule

OE

AW =—p— , , o 3.9
U e (39

¥

in which the weights are meved‘ in the direction of the hegative gradient of the
error o.r, cOst‘function, ﬁisthe learning rate. Obviously, equation (3.8) is a
continuous differentiabledfunction’ of every weight, SO gradient decent weight
updat\ikng rule can be appiied in learning to force the error decrease. |
The training normally needs multiple weight updating until the error of the
networi<s is less than a targe_t error level. Each time of updating, also called one
"'epoch", involves all weights. Completed back—propagation algdrithrh is 4
described in plenty of literatures (Bishop, 1995; Haigan,k Demuth, ‘& Beale, 1996;

Hassoun, 1995; Hertz etal., 1991). The brief back-propagation procedure is: -



1. Prepare input-output pairs. Input includes parameters to be studied.
Output is the correct output of the systerh. Initialize the weights to Small random
numbers, such as in the range‘of~[-1,1j.' s

2. Compute the error using equation (3.8). - - |

3. If the error is less than the target error, stop training.

4. Compﬁte' the gradient of the error with‘ respect to “every weight.
5. Update weights according to the updéting rule.

6. Go back to Ste'p}3 for next epoch.

- The basis of the back-propagation«algorithm is simple an‘d‘ea‘sy‘to be
complemented. However, it is too slow for practical problems. In present study,
another algorithm named Resilient Back-Propagation (RPROP) was used. The
main difference »of RPROP from basis back-propagation is a different updating
rule is applied. Thé RPROP algorithm is much faster than basis back-
propagation algorithm. A complete déécription of RPROP algorithm is given in
the wérk of Riedmiller and Braun (1993). ‘

A meth?ad for improving model generaIiZation, early stopping, was used in
this study. The available data for’each training was divided into three subéets
which were not overlapped. The first set, training set, was <used for computing
the gradient and updating the hetwork weights. The second subset was the
validation set.  The third éet, testing set, was used to test théprediCtion acduracy
of the networks after training Was done. 'I:he error on the validation éet was

monitored during the training process. . The validation error normally decreases
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during the initial phase of 'training, as does the training set error. However, when
the networks begins to overfit the data, the error.on validation sét will typically
begin to rise. When the validation’error increases for a specific number of
epo‘c,hs, the training is stopped. In this study, fhe t‘ra‘inin;c‘; stopped when eithef
one of fblldwing Sonditions was satisfied: B | |

1. The errof on the training set was less than or ’e:q"uaylwto the target error.

2. The validation error did not decrease in the rﬁoSt recent 50 epochs.

In this study, the number of input units eqﬁaléd the number of design
parametérs to be studied. The nufnber of output was always 1 which was the
anhual energy bonsumption of the building. The sizes of tréining ks4et," Validation X
set, and testing set were 1024, 256, and 256 input-output pairs, réspectivqu. All
input‘paramc(aters were randomly geherated within their ranges speciﬁed in Table
3 then n’Qrm‘aIi)zed, so that they fell in the rahge of [0,1]. The oﬁtput data wérev
generated by DOE-2.1E gimulations. ' ' | }’

The next questioﬁ is: how many hidden units should be used in the
networks'? In .general, fhe numbér of hidden units depends on the complexity of
the problem and there is no’comr'nor_\ method to know it. If there are too many
hidden uﬁits, the networks ma’ybe t00 complicated to converge after a lot of
epochs; if there are too few hidden units, the’ networks might be not complex |

enough to represent the input-output relationship. A batch of networks with.

different number of hidden units were trained in order to determine how many



hidden units were suitable for model building energy system. ;Figljre 4 shows

Mean Square Errors on testing data set defined as

256

E[W]/n— Z[Emm "em,k,] /1256 S (3.10)

255
after training the neuraI networks with a series of different number of hidden
-units. Input parameters of the networks‘V\;ere all 40,design parameters listed in
Table 3. One Athousand five hundred and thirty six input-output pairs were used
of which 1024 were used as training set’, 256 \)aiidation eef, ;an\d ‘25:6, testing set.
For each number‘of hidden units, 20 trainings were conducted and vthe mean
results wereshewn ink',the figure where error bars are standard error of the mean.

A clear trend is shown that larger number of hidden units generally results in

0.08 -

'f\n

0.06 -

o

[=)

~
I

Mean Square Error

%w&

i ' i ! I ' ! i ! i
4 8 12 16 20

" Number of Hidden Units

0.05

Figure 4. Results of training with different number of hidden units.
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smaller error on testing. However, larger number of hidden units remarkably,:,
slowe down the training. In present study, 4 hidden units was used in aII‘ne‘ural
networks trainings which wae a compromise \between computation complexity
and network performance. |

‘The networks training program was provided by Dr. Yuxi Fu at University
~ of California at Berkeley, written in C programming language. -

- Sensitivity Coefficient Revealed by ANN -

After training, the input-output relationship is represented by the values of
weights and the architecture of the networks. Through anaIyzing the weights
connecting input parameters and the output, the sensitivity of the output to input
parameters can be quantified. A form of sensitivity coefﬁcient revealed by the |

neural netw'orks for the input parameter &, was defined in this study as

(ANNSC), =3 abs(W, 1)), | (3.11)

where ab&(x) returns absolute value of x. Sensitivity coetfieient from ANN (ANN
SC) is the sum of weights connecting the input parameter with hidden units
multiplied by the weights frdm hidden ‘unite to the output.’

 Afteral ANN SCs were determined, the relative importance of input
pararneters Were sorted by the AN’N‘SCs; kPara}meters with .Iargerj’ANN‘:S:Cs are

relatively important.

 Developing Building Models
Multiple Linear Regression (MLR) analysis and ANN were used to develop

building models. The input parameters used in modeling were 5, 10, or 15 most
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~ important parameters ranked by both sensitivity coefficients SC1, SC2, SC3 from

DSA, and ANN SC from ANN. Therefore, there are 6 mainl combinations of
models, MLRS, MLR10,’MLR1 5, ANN5, ANN10, and ANN15, or 24 detailed
combinations of models, MLR5-SC1, MLR5-SC2, ..., MLRS-ANN SC, ...,
ANN15-SC1, ANN15-SC}2, ..., and ANN15-ANN SC. -

. Same databas‘e was used in both MLR and ANN modeling. The database
was generated by DOE-2.1E simulations. Data set of modeling (training for
ANN) contained 1024 ihpUt—output pairs; Data set of validation (only uéed for
ANN) contained 256 input-output pairs; Data set of testing also contai‘ned 256
input-output pairs. In ’all data set, 40 design parameters were randomly selected
within their ranges. | |

The prediction power is measured by Mean Absolute Error (MAE)
| ' = 256 . ' - ‘

MAE = (ZlEmodel' - Edoe—Z,IEI) + 256’ (3.1 2)

i=l : : . .

and Root Mean Square Error (RMSE)

. ' 1

256 2 .

RMSE = I:(Z(Emodel doe—2.1E)2)+256] » (3.13)
i=1 : )

on testing data set, where E,,,Dde,is building ahnual energy consumption predicted

by models, E..2 £ is the energy annual consumption calculated by DOE-2.1E

simulation.
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Modeling with Multiple Linear Réqression

Multiple Linear Regression (MLR) analysis is the most extensively used
method in modeling linear systems or approximately modeling nonlinear
systems. MLR takes observed input-output data pairs to derive linear equations

expressing input-output relationship of the system.: The linear equations derived

by MLR have simple formats. For example, for MLR15 model, the energy

equation has the form of:

E=[Za,-x,-]+b, | (3.14)
i=l . v o N

where E is the predicted annual energy consumption, x; is input parameter, a;and

b are coefficients which need to be'ﬁgured out by the regression. The Matlab

statistics toolbox (http://mathworks.com) was used to 'perform linear regression.

Modeling with ANN

=

Using the same data set, ANN models are also developed. Twenty
trainings were conducted for each model. The MAE and RMSE on testing data

set was the avarage of 20 trainings.
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CHAPTER IV
RESULTS AND DISCUSSIONS -

Base Case Model .~

The base case model is very important in sensitivity analysis because all

Oy

% : ‘
subsequent calculations and analysis are based on the comparison with it. Using

 DOE-2.1E program, a base case model was developed with 40 parameters

shown in Table 3 under base case values. After simulation with the input file
présented in Appendix A, the energy performance data of the base case model
buildinQ was extracted from DOE-2.1E report files. The building cthumes 200.8
Megawatt Hour (MWh)~electricity annually. Load p”eak is 49.6 Kilowatt (KW),
occurring at 8:00 am, Febera'ry 2nd. Figure 5 andFigure 6 show compongnts of

annual and monthly energy consumption of the base model. Obviously the

~ Lights
‘ 7% Equipment
HVAC Aux s 1 N 10%
©30%

Space Cool
12%

Space Heat
41%

Flgure 5. Components in annual energy consumptlon of the
base case model. ~
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heating is the largest part of the whole energy usage because northéastern lowa

~ has long and cold winter which makes fhe heating demand very high. The HVAC

system and plant approximately consume 30% total énefgy while lights and

equipment consume 17% totally. Space cooling demand is relatively low due to

“the short or moderate summer in lowa. Figure 6 shows the distributions of these

HVAC Aux

=

=

=

[ =4

kel

a

5 4 Space Cool
'é F21Space Heat |-
> mEquipment ,
3 mLights

17| :

> SRS '
£

5 . i

= 0,-AlidlLLLLd e e T e o

Jan Feb.Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figljre 6. Components in monfhly energy consumption of the
‘ base case model.

components month by month‘in the yvhole year. The heatin‘g mostly occurs in
Winter while cooling éppears mostly in summer; The lighting and equipment
energy usége ‘are'h pretty constant across the whole V’yeér," from Januéry to
December.

Differential Sensitivity Analysis

Three forms of sensitivity coei"ﬁcients SC1, SC2, and SC3 defined in Table

4 were calculated to evaluate the sensitivity of the annual energy performance of
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the building to 40 parameters in Table 3 Appendix B lists results of sensitivity
analysis on all these parameters with DSA method. Figure‘7‘is the sensitivity
analysis of the window shading coefficient, showing how the annual energy
consumption responds to the ehanges of window shading coefficient.
Simulations with 6 perturbations on window shading coefficient were conducted
~ with DOE-2.1E program while all other parameters kept fixed. In Figure 7,
square merker denotes the base case condition, open circles are other

perturbation values, horizontal axis is window shading coefficients selected within

L-WSC, Window Shading Coefﬁcient

‘[Sensitivity Coefficients]

220} SC1 = 60.8963
SC2=0.1582 '
210t SC3=10.1819

[R? of Regression] :
Linear = 0.9847 .
190t o

180t

—_
'~
- O

Annual Energy Consumption (MWh)

—_
2]
O

- 0 02 04 06 .08 1
L-WSC

Figure 7. Sensitivity analysis of window shading coefficient. .

normal ranged deflned in Table 3, vertrcal axis is annual energy consumptron in
: MWh extracted from DOE 2.1E reports dotted I|ne is Ilnear regresslon strarght
line, on the nght sens|t|V|ty coeﬁ' crents and the coeﬁ' cnent of determlnatlon (R?) of

the linear regresslon are llsted. The coefﬁ0|ent of determrnatlon (R represents
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the goodness of curve fitting. By cpmparing the sensitivity coefficients of
different input parameters, the relative importance or contributions of these input

" parameters can be assessed. Table 5 shows fhe most impbrtant 20 parameters
ranked by sensitivity ‘coefﬁcients. Numbers in the table ;are parameter indexes by

which the parameters can be looked.up from Table 3.

A

Table 6

- Relative Importance of Input Parameters -

Ranking SC1 sc2 SC3 ANN SC
1 19 12 12 19
2 10 . 13 13 11
3 33 5 .85 .. 20
4 28 20 20 12
5 39 1 10 24
6 35 24 1 2

7 24 10 19 10
8 2 : 2 2 ‘ 3 ; :
9 11 16 24 13

, 10 29 19 16 16
11 3 7 7 6
12 " 20 : 3 - 3 5
13 6 .8 8 : 7
14 32 0 28 . 28 8
15 7 25 18 32
16 8 29 25 35
A7 34 14 , 29 1
18 14 32 . 32 . 38
19 12 18 6 40
20 13 . 6 31 25

Figure 8 shows sensitivity coefficients of all pérameters ﬁo'rmalized by the
maximum absolute value for each type. The parameters having larger sensitivity
coefficients should be carefully considered in building and HVAC design and
operation since they contribute more to building energy consumption. On the

other side, parameters with smaller sensitivity coefficients are not that important



4

so they can be chosen freely in their normal range because they do not play

crucial roles in energy‘ conservation. - ‘ k |
Among all senéifivity coefﬁciénts shown |n Figure'8, results in forms SC2

and SC3 are similar because all of them were célcUIated by thé slope of linear

regression line normalized by either base case value or mean value. Form SC1

~ shows Iérge fluctuation in the value of ‘sens‘itiv‘ity coefficient because the

amplitude of a parameter greatly depends on its unit.

Each sensitivity coefficient analysis method has its own advantages and
disadvantages. For example, the SC1 mayb have problems when it is used in
cpmpafing relative importance of different parameters because the 4va|ue of it
depé’nds on the unit of the input, and different units f‘or’ same parameter may
yier very differént values of sensitivity coefficient. So itis not'éxpected tobea

good statistics to evaluate parameter importance.

~ Now the problems are: which one is better? Which one is more efficientin

applications? The most intuitive ‘app’roach to compare the goodness or

application efficiency of different sensitivity coefficients is to develop models with

‘the most important parameters selected by different sensitivity coefficients, then

compare the prediction powér of these models. The ones yielding better models |
are considered as betterksensit'i\vity coefiicients. In this study, three differential
senSitivity cdefﬁcients, together with the one revealed by the artificial neural

networks, were assessed using this approach.
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- Figure 8. Four forms of sensitivity coefficients of 40 parameters.

Sensltlvntv Coefﬁcrent Revealed bv Artlf' cial Neural Networks

In thls study, the Arhﬁcnal Neural Networks (ANN) technlque was utlllzed in

forward ANN showmg in Flgure 3 was used

sens|t|V|ty analys|s To the authors knowledge this was the f|rst time that the
" ANN was used for sens1t|V|ty analysis i in bu1ld|ng energy study A two layer feed-
In order to calculate ANN SCs of
deslgn parameters the networks wrth alI 40 parameters randomly |n|t|allzed were

trained. The data used for tralnlng included 1024 pairs for training and 256 pairs



for validation. - Five hundred trainings were conducted. After each training, the
ANN SCs for all pafameters were cofnputed with the equation (3.11). The final
ANN SC for each pa}ameter was the average from 500 trainings. : Figure 8
ShO\.‘NS ANN SCs for all parameters and the most importént 20 parameters
ranked by ANN SCs are listed in Table 5. The érror bars (Standard Error of the
~ Mean, SEM) of ANN SCs inFigure 8 are very sméll, indic‘ating the sensitivity
analys:is using this approach is very fobust which can distinguish the relative
importancé of different parameters consistently. |

An obvious conclusién from Figure 8 is that important parameters mostly
are distri'buted in paraméter catego‘ries load and HVAC system and rarelyf located
~_ in HVAC plant.-

Models for Energy Consumption Prediction

Models using MLR and ANN methods. were developed successfully. 5,
10, or 15 most importantg parametérs ranked by both differential sensitivity
coefﬁ‘cierlltsSC1f, SC2, SC3, and ANN SC yielded by neural networks were used

in modeling‘a‘sinput parameters. So there are 6 major classes of rhodels (MLR5,
MLR10, MLR15, ANNS5, ANN10, and ANN15) and 24 subclass models (MLRS-
SC1, MLR5-SC2, ..., MLR5-ANN SC, ...,‘ANN15-SC‘i,'ANN15}-SCZ, ..., and
ANN15-ANN SC).

After each model was created with 1024 pairs of input-output data from
DOE-2.1E simulation; 256 pairs testing data were used to measure the predictiqn

accuracy. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)V
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deﬂned in equations 3.12 and 3.13 were used as'prediction aCcuracy indicators.
Both of MAE and RMSE were used in order to make sure if data trends and
conclusions change under dlfferent error measures. - The results showed that no

matter wh|ch one was used the conclusions of this prolect would not change.

Since the RMSE is the most extens1vely used stat|st|cs to evaluate model

~ prediction accuracy (Lam et al., 1997; Lee, 1999; Ruch Chen Haberl &

CIarrdge, 1993; Sorrell et al., 1995), in the following sections\all results are

discussed in RMSE.

Multiple Linear Reqression Models

Figure }9 shows prediction results of MLR15 models based on 15 lmportant
parameters c0ming‘ from three DSA and one ANN sensltivity coefﬁcients Each
dot represents the energy consumptlon from DOE 2.1E s1mulat|on (horlzontal
aX|s) and the predlctlon of the model (vertical aX|s) for one combination of all 40
parameters TotaIIy 256 S|mulat|ons and pred|ct|ons are drawn in the figure.
This resuIt suggests that MLR model with 15 input parameters can predict
building energyéconsumption correctly with RMSEs (normalized by mean»DOE-
21.E simulation resuIts) of all dots from 1-4 71 % to 20. 62% Another conclusion
from this fi gure is that the model wrth parameters ranked by ANN sensmvnty
analysis is the best in pred|ct|ng energy usage, |mpIy|ng the ANN method is
bette‘r than DSA method in sensitivity analysis.

-MLR10 and MLRS models have similar prediction trend as that of MLR15

models. The models coming from ANN SC also has the best prediction‘
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performance. -The difference of MLR10 and MLR5 models from MLR15 is on the

accuracy of their,predictiorf The RMSESs of MLR10 and MLR5 models

K

AN

are17.25% and 25.39%, respectively, for ANN SC-derived input parameters,“
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while itis 14.71% in MLR15-ANN SC model. This is very natural because a

DOE-2.1E Simulation Results (MWh)

DOE-2.1E Simulation Restilts (MWh)

Flgure 9 Energy consumptlon pred|ct|on of MLR15 models

model with more parameters is more accurate than a model with less

parameters. The disadvantage of increasing the number of parameters in
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modeling is the _complexit/y of the model also increases, which usually makes the ’

‘mode! developing harder and more time—consuming. Figure 10 shows prediction

results of MLR5 modele; in which the model with parameters coming from ANN
SC shows best prediyct‘i‘on_»performance.

The reason Why MLR iys extensively used comes from its §implicity which

" makes the aeplication extremely easy. For example, with the energy equation

developed }by MLR15 models; the annual energy end-use can be easily
calculated by summing 15 most important design parameters weighted by
coefficients in equation (3.14). This is ‘much, more simple fhan. the procedureof
DOE-2.1E simulatien in which the energy usage also can be predicted. In DOE-
2.1E, all details of the building design and HVAC equipmentvhave‘ to Be fed into
the simulatien' program although some of them can be set to default values. This
task is very compIiCated,‘ftime-consuming and hard to be accomplished, i
especially for a new user." This is the reason why DOE-2 programs are mostly
used in research rather than‘applicatiens.

Although MLR models can predict energy consumption reasonably, they

; Completely neglect the nonlinear part in the relaﬁonship between system input

and outkput.’ Therefore, linear models for a nonlinear system suchas buildihg

energy syetem may lose information embedded in the datvat')ase and des‘cribe the '

System insufficiently. - ,‘
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| Figure 10. Energy consumption prediction of MLRS models.

Artificial Neural Networks Models |

Using the same data set as used in oeVeloping MLR models ANN models
were also developed. All ANN5, ANN10 and ANN15 pred}i‘ction results showed
that models with parameters ylelded by ANN sensrtrvrty analysrs had best
predlctlon performance compared to models based on dlfferentlal sensitivity
coeff cients. Models based on SC2 and SC3 showed similar predlctlon

performance The reason is the definitions of SC2 and SC3 are largely



1o

equivalént (see Table 4) thus similar important parameters are picked out by

them. SC1-based models always have worst prediction accuracy because SC1

is not able to evaluate the relative importance of parameters efficiently due to the

unlt-dependency of the sensitivity coefficient. Figure 11 shows the annual

energy consumptlon predlcted by ANN15 models. - Data points of ANN SC-based

model mostly distribute along the diagonal dotted line forming a thin belt,

ANN Prediction Results (MWh)

ANN Prediction Results (MWh)
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| RMSE:30.99 MWh, 1232 % . ',-"
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implying the DOE-2.1E results and model prediction match very well in this -
model. bThe data points of SC1-, SC2-, and SC3-based model obviously
distribute more broadly around the diagonal line indicating worse prediction.

- Beside the superiority of ANN sensitivity analysis over conventional

~ differential sensitivity analysis, it is also shown that the ANN models have

- stronger prediction power than MLR models. This could be explained by the

nonlinearity of neural networks. ANN models can extract both linear and
nonlinear components from the system, while MLR approach ohly reveals linear

part of the input-output relationship of a nonlinear system. Figure 12, 13, and 14

s my By By
0B By B B B |
% igé %Z |
¥ BB R B

Method for Input Parameters -

Figuré 12. Comparison of MLR5 and ANN5ﬁmodels.

- are prediction accuracy comparisons of MLR and ANN models with 5, 10, and 15

input parameters, respectively. Figure 12 does not Ws'how much difference

between MLR and ANN models in which MLR models have similar prediction



)

performance to that of ANN models. One possibIe epranaticn is that the ability
of extracting nonlinear relationship of ANN is not very useful for this case
‘becauwse only five parameters are used and there is not much inter-parameter
nonlinear interaction. The most obviousﬁnding' from this figure is that the models
.based on parameters from ANN sensitivi_ty analysis (ANN SC) have smaller

- RMSEs (or better prediction accuracy) than other models based on SC1, SC2,

and SC3. The prediction performance of SC1-, SC2-, and SC3-based models

w
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Figure 13. Companson of MLR10 and ANN10 models.

are roughly same in Figure 12, impIying these three sensitivity coett” cients have
similar eff C|ency if only a few important parameters are to be identlf ed. The
RMSEs in Flgure 13 are smaller than those i in Frgure 12 and those in Figure 14
are further smaller than those in Flgure 13. When the number of parameters
increase, the model predrctlon accuracy aIso |ncreases because models with

more parameters take more |nformat|on of |nput output relatlonshlp into account.



From Figure 13, ANN models start to show their ab|I|ty to extract nonlrnear
relationship. - Except ANN10-SCA1, all other comparrsons in Figure 13 show that
ANN models are better than MLR models in predrctlng burldrng energy
consumptron In Figure 14, all ANN models have smaller RMSEs than
correspondrng MLR models It is I|kely to be true that wrth more rnput

‘ parameters ANN models can more effrcrently extract rnput output relatronshrp
wh|ch can not be reflected by l|near regresslon modeIs Like those in Frgure 12,
models wrth ANN SC derrved parameters in Frgure 13 also pred|ct better than
models based on SC1 SC2, and SC3 confi rm|ng that ANN sensrtrvrty analysis is
better than conventronal drfferentral sensrtrvrty analysrs In Frgure 14, ANN SC,
SC2 and SC3 models have srmrlar prediction accuracy because d|fferent |

' sensrtrvrty analysrs methods tend to y|eId similar sets of |mportant parameters

when the number of parameters needed is |ncreasrng

w
[3)]
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“CHAPTERV

- SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summarv and Conclusionsu o
The Artificial Neural Networks (ANN) technlque was applred to sensrtnvrty

‘ anaIys1s and modellng of an lmaglnary small ofF ice Iocated in lowa, and then

compared w1th convent|onal Differential SenS|t|v1ty AnaIySIS (DSA) and MuIt|ple

L|near Regressmn (MLR) methods that have been extenswely used in study|ng
the rnput—output relatlonshlp in burldlng thermaI systems
The model burldlng was descnbed in DOE 2, 1E Buﬂdmg Descrrptlon
Language (BDL; Lawrence Berkeley Laboratory, 1993) Forty desrgn factors ‘

from bUIldIng load, HVAC systems and HVAC refngeratlon pIant were selected

as |nput parameters to be studred The bu1Id|ng annual energy consumptlon from

the report of DOE-2. 1E S|mulat|on was used as the output of the system
After model burldlng was developed by DOE-2 1E both DSA and ANN
technlques were used to analyze the sensrt|v1ty of burldrng annual energy
consumptlon to 40 desugn parameters The reIat|ve |mportance of these
: parameters to the varratlon of energy usage were evaluated by the sensrtrvrty
coeffi crents comlng from both DSA and ANN analysrs
Flnally, the relatlonshlp between bu1ld|ng energy consumpt|on and |nput
parameters were modeled by both MLR and ANN technlques wrth the most
|mportant 5, 10 or 15 parameters ylelded in above sensrtlwty analysis

' expenments in order to predlct energy performance of the modeled burldlng
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The mainresults.and conclusions of this study are:

~ 1. ANN models are better than MLR models in predicting energy
consumption because the error between DOE-2.1E simulation and ANN model
prediction was smaller than that from MLR models. This is largely due to the
capacity of the neural networks in extracting input-output information from
nonlinear systems.

| 2. ANN sensltiwty analysls is better than DSA because models developed
W|th ANN der|ved |mportant parameters more prec1sely predicted the bu1ld|ng
energy consumptlon |mply|ng ANN sens1t|v1ty anaIysrs more efF iciently evaluated
the relatlve |mportance of |nput parameters The results concluded that ANN
sensmwty analys1s could s1multaneously account for nonlinearlty of the system
; and generate the sensmwty of the systm output to |nd|VIdual |nputparameter .
changes, showing the superiority of ANN sensitiyity analysis oyer conventional
sensitivity analysis methods like ‘DSA in whichthesystem is assumed to be
linear, and MCA in which i’ndividual sensitivities cank not be obtained (Lomas &
Eppel 1992) o S |

| 3 Both DSA and ANN sensmvnty analysrs showed that |mportant
parameters tended to be distributed in HVAC system then bu1Id|ng load and
rarely located in HVAC plant Th|s fi nding roughly agrees w1th the senS|t|V|ty

analyS|s ona typ|caI ofF ice bu1ld|ng Iocated in Hong Kong (Lam & Hui, 1996)

indicating S|milar Knsmwty characterlstlcs of bU|ld|ng energy performance can

be found in different geographical locations.



The resuits of this project suggest that ANN technique can be adopted to
‘ perform sensitivity. analysis and develop models to quantlfy the input- output
relatlonshlp in bU|Id|ng energy systems The results showed that the ANN
method had better performance than both DSA and MLR wh|ch have been

 extensively used in building thermal_system studies.

Recommendations

Thermal characteristlcs of the bu1ld|ng envelop, except some propertles of
wmdow glasses, were not parameterlzed and |nvestlgated in th|s study due to the
Iack of _construct|on knowledge by the author. Although some studies have

" shown that the building energy performance was Ies‘s sensitive to measures
affectlng the bu|Id|ng envelop (Corson 1992; Lam & HUl 1996) it remalns
unknown if the|r fi nd|ngs could be generallzed to other geographlcal locat|ons
under different climate cond|t|ons In the future research, factors regarding
bu|ld|ng envelop thermal propertles couId be stud|ed | |

The def n|t|on of ANN sens|t|v1ty coeffi c1ent in equatlon (3 11) is very

_intuitlve but not necessarlly the best one. The accuracy of it could be affected by ..

the activation function of the hidden units since the weights before and after
hidden units are linked by this function. It might be reasonable to trysome other
forms of ANN sensitivity coefﬁcients which take the activationfunction ofhidden ‘
units into account in the’future and compare their efﬁciencywiththat of the

current one.
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“APPENDIX A

DOE-2.1E INPUT FILE FOR BASE CASE MODEL

$****************************************************************************

$ FILE

INPUT FILE FOR MODEL BUILDING ENERGY SIMULATION UNDER DOE-2.1E

$ CREATOR : AUTOMATIC INPUT FILE GENERATOR WRITTEN BY QUAN TANG

$ VERSION 3.0

* o

*
*

$****************************************************************************

TIME: 31-Oct-2001 17:10:36
TYPE:. BASE. CASE .

< 0

.PARAMETER VALUES USED IN CURRENT INPUT FILE

$

$ L-BLA = 0 DEGREE

$ L-WSC = 0.6

$ 'L-WGC = 1.0 BTU/HR- SQFT F
$ L-WNP = 2

$ L=-SAT = 70 F.

$ L-IFR = 0.6 AC/HR
$ L-EPL = 2.0 W/SQFT
$ L-LTL = 1.5 W/SQFT
$ L-LTT =.SUS-FLUOR
$ L-OPD = 0.02 PERSON/SQFT
$ S-SYT = VAVS

$ S-CSP =72 F

$ S-HSP. = 68 F

$ S-TST = PROPORTIONAL
$ S~TTR =2 F

$ .S-OAF = 19 CFM/PERSON
$ S-OAC = TEMP

$ S-FDT = 6 F -
$ S-FPC = 0.002 KW/CFM,
$ S-FCT = INLET

$ S-FMP = IN-AIRFLOW
$ S-FPM-= DRAW-THROUGH
$ S-RDT = 55 F
$ S-MCR = 0.2
$ P-CST = 42F
$ P-CTR = 3.5 F
$ P-CMT =65 F
$ P-CCP = 0.06
$ P-CGB = 0.5
$ P-CDT =9 F .
$ P-CPH = 60 FT
$ P-CIE = 0.8
$ . P-CPL =.0.01
$ P-CME =.0.85
$ P-HBL = 0.04
$ P-HDT = 30.F
$ P-HPH = 60 FT
$ _P-HIE = 0.8
$ P-HPL = 0.01
$ P-HME = 0.85
$

Building Azimuth

Window Shading Coefficient
Window Glass Conductance
Window Number of Panes
Space Air Temperature
Infiltration Rate
Equipment Load

Lighting Load -

Lighting Type

Occupant Density

System Type

Cooling Set Point
Heating Set Point
Thermostat Type
Throttling Range

Qutdoor Air Flow Rate

. Outdoor Air Control

Fan Air Delta T
Fan Power Consumption
Fan Control

'Fan Motor Placement

Fan Placement

"Reheat Delta T

Minimum CFM Ratio

Chilled Water Supply T

Chilled Water Throttling Range
Chilled Water Minimum Entering Air T
Chilled Water Condenser Power Ratio

..Chilled Water Hot Gas Bypass PLR

Chilled Water Design Delta T
Chilled Water Pump Head

Chilled Water Pump Impeller Efficiency

Chilled Water Fraction of Pump Loss
Chilled Water Pump Motor Efficiency
Hot Water Boiler Loss

Hot .Water Design Delta T

Hot Water Pump Head

Hot. Water Pump Impeller Efficiency

Hot Water Fraction of Pump Loss

Hot Water Pump Motor Efficiency

Note: P-L-APP = 1/L-OPD in. load parameter list below

$**** LOAD: STARTING ***************************f*********f******************
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INPUT LOADS
INPUT-UNITS= ENGLISH OUTPUT UNITS= ENGLISH .o

$**** PARAMETER;\FOR LOAD START L L T L]
PARAMETER P-L-BLA=0 ..
PARAMETER P-L-WSC=0.6 ..

PARAMETER P-L-WGC=1.0 ..

PARAMETER P-L-WNP=2:...

PARAMETER P-L-SAT=70 .. .

PARAMETER P-L-IFR=0.6 ..

PARAMETER P-L-EPL=2.0 ..

PARAMETER P-L-LTL=1.5..

PARAMETER P-L-LTT=SUS-FLUCR ... : .- - .7
PARAMETER P-L-APP=50... ' .

$**** PARAMETERS FOR L.OAD: END F %k vk ke ke ke Sk ok sk Sk sk ok ke sk ok ke gk sk ok ok Sk ok ok ok Sk gk ok ke sk Sk bk Sk sk ok ok ke ke ok ok ok ok ok

TITLE LINE-1 *MODEL BUILDING INPUT FILE* ..
TITLE LINE-3 *AUTHOR: QUAN TANG, 8/2001* ..

ABORT ERRORS ..
DIAGNOSTIC WARNINGS
CAUTIONS ..

RUN-PERIOD JAN 1 2000° THRU DEC 31 2000 ..

BUILDING~LOCATION LATITUDE=42.55 'LONGITUDE=52.4
‘ALTITUDE=869.4226 TIME-ZONE=6"

AZIMUTH=P-~L~BLA HOLIDAY=NO
DAYLIGHT-SAVINGS=NO ...~ o

$BUILDING-SHADE

LOADS-REPORT 'V$VERIFICATION (ALL-VERIFICATION)

' VERIFICATION=(LV-A, LV-B, LV-D, LV-E, LV-F , LV-H, LV-T)
$SUMMARY= (ALL-SUMMARY)
SUMMARY= (LS~-A, LS-C, LS-D, LS~F)
REPORT-FREQUENCY=HOURLY - -

\ HOURLY-DATA-SAVE=FORMATTED ..

LV-3A: GENERAL' PROJECT AND BUILDING INPUT
LV-B: SUMMARY OF SPACES

LV-D: DETAILS OF ‘EXTERIOR. SURFACES

LV-E: DETAILS OF UNDERGROUND SURFACES
LV-F: DETAILS OF INTERIOR SURFACES

LV-H: DETAILS OF WINDOWS

LV-I: DETAILS OF CONSTRUCTIONS

wu v n

"LS-A: SPACE: PEAK LOADS SUMMARY ..

LS-C: BUILDING PEAK LOAD COMPONENTS

LS-D: BUILDING MONTHLY LOADS SUMMARY

LS-F: BUILDING MONTHLY LOAD COMPONENTS IN MBTU

W« v n»v

$**** MATERIAL DEFINITIONS;**************************************************

Q-VB1 = MATERIAL . . RESISTANCE=0.06-..
Q-IN1 = MATERIAL THICKNESS=0.2917
: .~ CONDUCTIVITY=0.025
DENSITY=0.6 ‘
SPECIFIC-HEAT=0.2 ..

$**** LAYER DEFINITIONS . % %% sk ks sk ok sk ok ok ok ok ok ok kb ok ok sk ok ok ok ko sk okok ok koo ko ok sk kok sk okok sk kb ok ok ok ok ok ok ok

LAY-R1 =LAYERS MAT=(RG02,AR02,IN47,Q—VB1,CCOZ,AL23,CCOZ) I-F-R =.61 ..
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LAY-WB1 =LAYERS MAT=(CCO03,IN43,AL11,Q-IN1,Q-VB1l,GP02) I-F-R =.68 ..
LAY-WT1 =LAYERS MAT=(CCO4,IN43,ALl1l1,Q-IN1, GPOZ) I-F-R =.68 ..
LAY-P1 =LAYERS MAT"(GPOZ IN13,GP02) I-F-R =.68 ..

$**** CONSTRUCTION TYPES OF ROOF,_WALL, CEILING, PARTITION, GROUND GLOQR ****

ROCFS =CONSTRUCTION LAYERS=LAY-R1 ABSORPTANCE=0.29 ..
WALL-BOTTOM =CONSTRUCTION LAYERS=LAY-WB1 ABSORPTANCE=0.65 ..
WALL-TOP =CONSTRUCTION LAYERS=LAY-WT1 ABSORPTANCE=0.65 ..
WALL-INT =CONSTRUCTION LAYERS=LAY-Pl ..

CEIL =CONSTRUCTION U-VALUE=0.317 ..~

FLOORG -~ . - =CONSTRUCTION U-~VALUE=0.609 ..

$**** GLASS TYPESOFWINDOW & GLASS DOOR ****jk*******************************

WINDOWS =GLASS~-TYPE SHADING-COEF=P-L-WSC GLASS-CONDUCTANCE=P-L-WGC
o PANES=P-L~WNP ..
GDOOR ' =GLASS-TYPE SHADING-COEF=P-L-WSC GLASS~CONDUCTANCE=P-L-WGC

PANES=P-L-WNP ..

s**** INTERNAIL LOAD SCHEDULE *****************************;k******************

PPLSCH =SCHEDULE THRU.DEC 31 (ALL) (1,7)(0) (8,18) (1) (19,24)(0) ..
LGTSCH =SCHEDULE- THRU DEC 31 (ALL) (1,7) (0)-(8,18) (1) (19,24) (0) ..
EQPSCH =SCHEDULE THRU DEC 31 (ALL) (1,7)(0) (8,18) (1) (19,24) (0) ..

$**** SET DEFAULT VALUES ***kkkdkkdkkkkhkkdkkkdkkddkkkdhkkdkkkdkkddkkkkhkkdkkddkkdrkkdrk

$**** SPACE CONDITIONS OF ALL ROOMS & PLENUMS *’-******************************

ROOM-COND =SPACE-CONDITIONS _
: ZONE-TYPE. =CONDITIONED
TEMPERATURE b =(P-L~SAT) .
INF-METHOD =AIR-CHANGE
. AIR-CHANGES/HR =P-L-IFR
. PEOPLE-SCHEDULE =PPLSCH
AREA/PERSON .. - =P-L-APP
PEOPLE~HG-LAT - : =205
PEOPLE-HG-SENS . - =245
LIGHTING~SCHEDULE " =LGTSCH
LIGHTING-TYPE =P-L-LTT
LIGHT-TO-SPACE o =0.8
LIGHTING-W/SQFT. . =P-L-LTL
EQUIP-SCHEDULE =EQPSCH ‘ N
* "EQUIPMENT-W/SQFT =P-L-EPL

- FLOOR-WEIGHT - o =20 ..

PLENUM-COND =SPACE—CONDITIONS  :
ZONE-TYPE .~ =PLENUM ..

$**** SPACE DESCRIPTIONOF ALL PLENUMS ************************;*************

$ PLENUM 1: P-ALL

P-ALL =SPACE . .
X=0.5 ¥=0.5:2=8.5 AZIMUTH=0
SPACE-CONDITIONS=PLENUM-COND AREA—2553
VOLUME= 14041.5 FLOOR-WEIGHT=5 ..

WE-P-ALL —EXTERIOR—WALL . ’ :
X=69 Y=0 2=0 AZIMUTH= 90 HEIGHT=5.5 WIDTH 37
CONSTRUCTION=WALL-TOP ..

WS~P-ALL —EXTERIOR-WALL
X=0 Y=0 2=0 AZIMUTH 180 HEIGHT=5.5 WIDTH=69



CONSTRUCTION=WALL-TOP ..
WW-P-ALL —EXTERIOR-WALL
X=0'Y=37 Z=0 AZIMUTH=270 HEIGHT=5.5 WIDTH=37
CONSTRUCTION=WALL-TOP ..
WN-P-ALL =EXTERIOR-WALL.: : )
’ X=69 Y=37 Z=0 AZIMUTH=0 HEIGHT=5.5 WIDTH=69
CONSTRUCTION=WALL-TOP ..

ROOF-P-ALL =ROCF
X=0 Y=0 2=5.5 AZIMUTH=180 TILT=0
HEIGHT=37. WIDTH=69 GND-REFLECTANCE=0
CONSTRUCTION=ROOFS ..

s**** SPACE DESCRIPTION OF ALL ROOMS ****************************************

$ SPACE 1: LOBBY, LOBBY

LOBBY =SPACE
X=0.5 Y=0.5 Z=0 AZIMUTH=0 :
SPACE-CONDITIONS=ROOM-COND AREA=324.0625
VOLUME=2754.51325 ..

WS-LOBBY =EXTERIOR-WALL
X=0 Y=0 Z=0 AZIMUTH=180 HEIGHT=8.5 WIDTH=15.25
CONSTRUCTION=WALL-BOTTOM .. .

DRS-LOBBY =WINDOW
X=4.625 Y=0.HEIGHT=7 WIDTH=6 "~ . ' :
GLASS-TYPE=WINDOWS ..

WW-LOBBY  =EXTERIOR-WALL
X=0 Y=21.25 Z=0 AZIMUTH=270
HEIGHT=8.5 WIDTH=21.25
CONSTRUCTION=WALL-BOTTQM .o

WINW LOBBY —WINDOW
X=0.,125.Y=3.5 HEIGHT=5 WIDTH 21
GLASS~TYPE=WINDOWS ..

C-LOBBY . =INTERIOR-WALL
"~ HEIGHT=21.25 WIDTH=15.25
NEXT-TO .P-ALL CONSTRUCTION=CEIL...

F-LOBBY - =UNDERGROUND-FLOOR AREA=73
CONSTRUCTION=FLOORG ..

$ SPACE 2: OFF-SW, OFFICE SOUTH-WEST

OFF-SW =SPACE
X=16.25 Y=0.5 2= o AZIMUTH=0
SPACE-CONDITIONS=ROOM-COND AREA=192,375
VOLUME=1635 1875 . '

WS-OFF-SW =EXTERIOR-WALL .
X=0 Y=0 2=0 AZIMUTH= 180 HEIGHT=8.5 WIDTH=13.5
CONSTRUCTION=WALL-BOTTOM ..

WINS-~OFF- SW —WINDOW ‘
X=0.25 ¥=3.5 HEIGHT 5 WIDTH=13
GLASS-TYPE=WINDOWS ..



WW-OFF-SW =INTERIOR-WALL -
HEIGHT=8.5 WIDTH=14.25
NEXT-TO=LOBBY CONSTRUCTION=WALL~INT
: e o
C-OFF-=SW  =INTERIOR-~WALL -
. 2. HEIGHT=14.25 WIDTH=13.5
NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F-OFF-SW =UNDERGROUND-FLOOR AREA=55.5
CONSTRUCTION=FLOORG ..
$ SPACE 3: OFF-SM, OFFICE SOUTH-MIDDLE ~
OFF-SM =SPACE
X=30.25 Y=0.5 2=0 AZIMUTH 0 )
SPACE-CONDITIONS=ROOM-COND ‘AREA=192.375 -
VOLUME=1635“1875 .

WS-OFF-SM. =EXTERIOR-WALL:
X=0 Y=0 Z=0 AZIMUTH=180 HEIGHT 8.5 WIDTH=13.5
CONSTRUCTION=WALL-BOTTOM ..

WINS-OFF-SM =WINDOW
X=0.25 ¥Y=3.5 HEIGHT= 5 WIDTH=13
GLASS-TYPE=WINDOWS ..

WW-OFF-SM =INTERIOR-WALL
HEIGHT=8.5 WIDTH=14.25
NEXT-TO=0OFF-SW CONSTRUCTION=WALL-INT ..

C-OFF-SM . =INTERIOR-WALL :
’ ’ HEIGHT=14.25 WIDTH=13.5
NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F-OFF-SM =UNDERGROUND-FLOOR AREA=55.5
CONSTRUCTION=FLOORG ..

$ SPACE 4: OFF-SE, OFFICE SOUTH EAST

OFF~SE =SPACE
X=44, 25 ¥=0.5:2= 0 AZIMUTH=0
SPACE-CONDITIONS=ROCM-COND AREA=220.875
VOLUME=1877.4375 ..

WS-OFF=~SE —EXTERIOR WALL
X=0 Y=0 Z=0 AZIMUTH=180 HEIGHT 8.5 WIDTH=15.5
CONSTRUCTION=WALL-BOTTOM ..

WINS-OFF-SE =WINDOW
X=0.25 Y=3.5 HEIGHT=5 WIDTH=15
GLASS—TYPE=WINDOWSV..

WW-OFF-SE —INTERIOR-WALL ' : L
HEIGHT=8.5 WIDTH=14.25
NEXT-TO=0OFF-SM CONSTRUCTION=WALL-INT ..

C-QFF-SE - =INTERIOR-WALL .
HEIGHT=14.25 WIDTH=15.5 .
NEXT-TO P-ALL. CONSTRUCTION=CEIL ..

A

F-OFF-SE =UHbERGROUND—FLOOR AREA=59.5
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CONSTRUCTION FLOORG .

$ SPACE 5: COPY- R,YCOPIER ROOM
COPY-R =SPACE "
X=60.25 Y=0.5 Z=0 AZIMUTH 0
SPACE~CONDITIONS= ROOM—COND AREA=131.8125
VOLUME= 1120 40625 <o :
WE-COPY-R =EXTERIOR-WALL
0L X=9,25 Y=0.Z2=0:AZIMUTH=90 HEIGHT=8.5 WIDTH=14.25
CONSTRUCTION=WALL-BOTTOM ..

WINE-COPY-R =WINDOW =~ . -
- X=0.125 Y=3.5 HEIGHT=5 WIDTH=14
- o GLASS-TYPE=WINDOWS ..

WS-COPY~-R =EXTERIOR-WALL
X=0 Y=0 2=0 AZIMUTH=180 HEIGHT=8.5 WIDTH=9.25
CONSTRUCTION—WALL BOTTOM ..

WINS-COPY-R " =WINDOW
X=0.125 Y=3.5 HEIGHT=5 WIDTH=9
GLASS-TYPE=WINDOWS ..

WW-COPY-R =INTERIOR-WALL
HEIGHT=8.5 WIDTH=14.25 )
NEXT-TO=0OFF-~SE CONSTRUCTION=WALL-INT ..

C-COPY-R =INTERIOR-WALL ‘ L .
HEIGHT=14.25 WIDTH=9.25 ,
NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F-COPY-R =~ =UNDERGROUND-FLOOR. AREA=47
’ CONSTRUCTION=FLOORG ..

$ SPACE 6: COR-MAIN, CORRIDOR MAIN
COR-MAIN. =SPACE - :
‘ " X=15.75 Y=15.25 Z=0 AZIMUTH=0
SPACE-CONDITIONS=ROOM~-COND AREA=349,375"
VOLUME=2969.6875 ..

WE-COR-MAIN =EXTERIOR-WALL
X=53.75 Y=0 Z=0 AZIMUTH=90. HEIGHT=8.5 WIDTH=6.5 -
CONSTRUCTION=WALL-BOTTOM ..

DRE—COR—MAIN -WINDOW
=1.75 Y=0 HEIGHT=7 WIDTH 3
GLASS TYPE=WINDOWS ..

WS2-COR-MAIN =INTERIOR—WALL
HEIGHT=8.5 WIDTH=13.5
NEXT-TO=OFF-SW CONSTRUCTION=WALL-INT ..

WS3-COR-MAIN =INTERIOR-WALL
: HEIGHT=8.5 WIDTH=13.5
NEXT-TO=OFF-SM CONSTRUCTION=WALL-INT ..

WS4~COR-MAIN =INTERIOR-WALL
‘HEIGHT=8.5 WIDTH=15.5
=, .NEXT-TO=OFF-SE CONSTRUCTION=WALL-INT ..



WSS -COR-MAIN =INTERIOR~WALL -
HEIGHT=8.5 WIDTH=9.25 )
NEXT-TO=COPY-R CONSTRUCTION=WALL~INT ..

C-COR-MAIN =INTERIOR-WALL
HEIGHT=6.5 WIDTH=53.75
- NEXT-TO :‘P-ALL. CONSTRUCTION=CEIL ..
F-COR-MAIN =UNDERGROUND-FLOCR AREA=120.5
CONSTRUCTION=FLOORG ..

$ SPACE 7: MEET-R, "MEETING ROOM ~. " .. '®
- MEET-R =SPACE
e X=0.5 Y=22.25 Z=0'AZIMUTH=0
SPACE-CONDITIONS=ROOM-COND AREA—385 0625
VOLUME=3273.03125"..

WW-MEET-R =EXTERIOR-WALL
: X=0 ¥=15.25 Z=0. AZIMUTH=270
HEIGHT=8.5 WIDTH=15.25
. 'CONSTRUCTION=WALL-BOTTOM ..

WINW-MEET-R . =WINDOW
'X=0.,125 Y=3.5 HEIGHT=5 WIDTH=15
GLASS-TYPE=WINDOWS ..

WN-MEET-R =EXTERIOR-WALL
X=25.25Y¥=15.25 Z=0 AZIMUTH=0
HEIGHT=8.5 WIDTH=25.25
CONSTRUCTION=WALL-BOTTOM ..
WINN-MEET-R =WINDOW
X=0,1257Y=3.5 HEIGHT=5 WIDTH=25
GLASS-TYPE=WINDOWS ..

WS1-MEET~-R =INTERIOR-WALL
' HEIGHT=8.5 WIDTH=15.25
NEXT-TO=LOBBY CONSTRUCTION=WALL~INT ..

WS6-MEET-R =INTERIOR-WALL
HEIGHT=8.5 WIDTH=10 .
- NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT ..

C-MEET-R =INTERIOR-WALL
HEIGHT=25.25 WIDTH=15.25
NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F-MEET-R =UNDERGROUND~-FLOOR AREA=81
CONSTRUCTION=FLOORG ..

$ SPACE 8: ' QOFF-NW, OFFICE NORTH-WEST .

OFF~NW '=SPACE
X=26.25 Y= 22 25 Z=0 AZIMUTH 0
SPACE-CONDITIONS=RCOM-COND AREA=205.875"
VOLUME=1748.9375" ..

WN-OFF-NW =EXTERIOR-WALL
X=13.5 ¥=15.25 Z2=0 AZIMUTH=0
HEIGHT=8.5 WIDTH=13.5.:

72



WINN-

CONSTRUCTION=WALL~BOTTOM ..
OFF-NW =WINDOW
X=0.25"Y¥=3.5 HEIGHT=5 WIDTH=13
GLASS-TYPE=WINDOWS ..

WS-OFF-NW =INTERIOR-WALL

HEIGHT=8.5 WIDTH=13.5
NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT

J WW-OFF-NW =INTERIOR-WALL .

HEIGHT=8.5 WIDTH=15.25
NEXT~TO=MEET~R' CONSTRUCTION=WALL-INT .

C-OFF-NW- =INTERIOR-WALL -* *

HEIGHT=15.25 WIDTH=13.5
NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F—OFF—NW =UNDERGROUND—FLOOR AREA=57.5

CONSTRUCTION=FLOORG ..

$ SPACE 9:iOFF-NE, OFFICE NORTH EAST
OFF-NE =SPACE

- X=40.25 Y=22.25 Z=0 AZIMUTH=0
SPACE-CONDITIONS=ROOM-COND. AREA=205.875
VOLUME=1749.9375 ..

WN-OFF-NE =EXTERIOR-WALL

X=13,5 Y=15.25 Z=0 AZIMUTH=0
HEIGHT=8.5 WIDTH=13.5
CONSTRUCTION=WALL-BOTTOM- ..

’

WINN-OFF—NE‘=WINDOW

X=0.25 Y=3.5 HEIGHT=5 WIDTH=13
GLASS-TYPE=WINDOWS ..

WS-OFF-NE =INTERIOR-WALL

“HEIGHT=8.5 WIDTH=13.5
. NEXT-TO=COR~-MAIN CONSTRUCTION=WALL-INT

WW-OFF~NE" =INTERIOR-WALL

HEIGHT=8.5 WIDTH=15.25
NEXT-TO=OFF-NW CONSTRUCTION=WALL-INT .

i

C-OFF-NE . =INTERIOR-WALL

HEIGHT=15.25 WIDTH=13. 5
NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F~OFF~NE =UNDERGROUND;FLOOR'AREA=57.5

CONSTRUCTION=FLOORG ..

$ SPACE 10: COR-REST, CORRIDOR NEXT TO RESTROOMS

COR-REST

=SPACE ,

‘X=54.25 Y=21.75 2=0 AZIMUTH=0
SPACE-CONDITIONS=ROOM-COND AREA=70.875
VOLUME=602.4375 ..

WN-COR-REST =EXTERIOR-WALL

X=4,5 Y=15.75 Z=0 AZIMUTH=0
HEIGHT=8.5.WIDTH=4.5
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CONSTRUCTION=WALL‘BOTTOM ..
e
DRN-COR-REST - =WINDOW .
7 X=0.75"¥=0 HEIGHT=7 WIDTH=3
. GLASS TYPE=WINDOWS ..

WW-COR~REST —INTERIOR WALL
HEIGHT=8.5 WIDTH=15.25
NEXT-TO=OFF-NE CONSTRUCTION=WALL-INT

4

C-COR-REST =INTERIOR-WALL
: HEIGHT=15.75 WIDTH=4.5 _
. NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F-COR-REST =UNDERGROUND-FLOOR AREA=40.5
: CONSTRUCTION FLOORG ..
$ SPACE 1l: MEN, MEN'S RESTROOM
MEN =SPACE
. X=59.25 Y¥=22.25 Z=0 AZIMUTH=0
SPACE~-CONDITIONS= ROOM—COND AREA= 76 875
VOLUME=653.4375 ..

WE-MEN —EXTERIOR—WALL
X=10.25.Y=0 Z=0 AZIMUTH 90
HEIGHT=8.5 WIDTH=7.5 :
CONSTRUCTION=WALL-BOTTOM ..

WINE~MEN =WINDOW-
HEIGHT=1.5 WIDTH=2
‘GLASS~-TYPE=WINDOWS - .
WS-MEN:- =INTERIOR~-WALL_
HEIGHT=8,5 WIDTH=10.25
NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT-..

. WA-MEN =INTERIOR-WALL
HEIGHT=8.5 WIDTH=7.5
NEXT-TO=COR-REST CONSTRUCTION=WALL-INT ..

C-MEN =INTERIOR-WALL
HEIGHT=7.5 WIDTH=10.25
- NEXT-TO P-ALL CONSTRUCTION=CEIL ..

F-MEN =UNDERGROUND—FLOOR AREA=35.5
- CONSTRUCTION=FLOORG ..

$ SPACE 12: WOMEN, WOMEN'S RESTROOM

WOMEN  =SPACE
X=59,25 Y= 30 25 2=0 AZIMUTH=0
SPACE-CONDITIONS=ROOM-COND AREA=74.3125
VOLUME=631.65625 ..

WE-WOMEN —EXTERIOR WALL
X=10.25 Y=0.2z=0. AZIMUTH= 90
HEIGHT=8.5 WIDTH=7.25
CONSTRUCTION=WALL-BOTTOM ..

WINE-WOMEN =WINDOW ,
HEIGHT=1.5 WIDTH=2 -



l,
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GLASS—TYPE=WINDOWS .o

WN—WOMEN ”EXTERIOR WALL
X=10.25 ¥=7.25 Z=0 AZIMUTH 0
HEIGHT=8.5 WIDTH=10.25
CONSTRUCTION=WALL-BOTTOM ..

WINN WOMEN —WINDOW :
HEIGHT=1.5 WIDTH=2: Co ’ -
-~ GLASS- TYPE‘WINDOWS .

WS-WOMEN =INTERIOR~WALL
HEIGHT=8.5 WIDTH=10. 25
'NEXT-TO=MEN CONSTRUCTION=WALL-INT ..

WW-WOMEN —INTERIOR*WALL .
HEIGHT=8.5 WIDTH=7. 25
NEXT-TO=COR~REST CONSTRUCTION=WALL-INT .. -

C-WOMEN =INTERIOR-WALL
HEIGHT=7.25 WIDTH=10.25
NEXT-TO P-ALL CONSTRUCTION=CEIL .. *°

F-WOMEN =UNDERGROUND-FLOOR AREA=35
CONSTRUCTION=FLOORG ..

END .. S ‘
COMPUTE LOADS .. . .- B !

$**** SYSTEM: - STARTING ** % &k kkok kok ok sk ok ok ok ok ok o ok ok ok db dk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok e o ok e ok ok

’

INPUT SYSTEMS -..

$***x* PARAMETERS FOR SYSTEM: *START ***kkkkkkdkkk ok kkkkkk k% &k k d ok ke kokok ok ke ke ke ko k&
PARAMETER P-S-SYT=VAVS ..

PARAMETER P-S~CSP=72:

PARAMETER P-S-HSP=68 ..

PARAMETER P-S-TST= PROPORTIONAL

PARAMETER P-S-TTR=2'.. -

PARAMETER P-S-OAF=19 ..

PARAMETER P~S-~OAC=TEMP ..

PARAMETER. P-S~FDT=6 ..

PARAMETER P-S-FPC=0.002 ... .
PARAMETER P-S-FCT=INLET ...
PARAMETER P-S-FMP=IN-AIRFLOW ..
PARAMETER P-S-FPM=DRAW-THROUGH ..
PARAMETER P-S-RDT=55 ..
PARAMETER P-S-MCR=0.2 ..

$**** PARAMETERS FOR SYSTEM: END %% %% ki ok ok ko s ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok okok kb ok ok ok o ok ok e ok kb

SYSTEMS-REPORT VERIFICATION=(SV-A, SV-B)
~. SUMMARY '=(SS-A,SS-D, SS5-H,SS-J)

REPORT-FREQUENCY=HOURLY
HOURLY-DATA-SAVE=FORMATTED ..

$ sv—A: SYSTEM DESIGN PARAMETERS
$ SV-B: ZONE FAN DATA , S ~ R

$ SS-A: SYSTEM MONTHLY 'LOADS SUMMARY



$ SS—D{VPLANT MONTHLY LOADS SUMMARY
$°SS-H: SYSTEM MONTHLY LOADS SUMMARY"
$ 55-J: SYSTEM PEAK HEATING AND COOLING DAYS

$**** ZONE CONTROLSCHEDULES hkkhkkkhkkkhkhkkkhkhkkkhkhkkhkhkkhkkkhkkkhkhkkkhkhkhkkkhkkhkkkhkkxkikx

HEATTEMPSCH .=SCHEDULE THRU DEC 31 (ALL) (1,24) (P-S~HSP) ..
COOLTEMPSCH :=SCHEDULE THRU DEC 31 (ALL) (1,24) (P-S-CSP) ..

$**** ZONE_R CONTROL '****************k****************************************
Z-CONTROL-R - =ZONE-CONTROL
" . DESIGN-HEAT-T=P-S-HSP
HEAT-TEMP-SCH=HEATTEMPSCH
. DESIGN-COOL-T=P-S~CSP "

' COOL-TEMP-SCH=COOLTEMPSCH

THERMOSTAT-TYPE=P-S-TST

" THROTTLING-RANGE=P-S-TTR ..

Sx¥kx ZONE-R ATR ***Hkddk dokkdohk ok dok ok sk kb h ko ko ok ok ok Rk ok ok ko ok ok ek ek ok ek ok ke
Z-AIR-R =ZONE-AIR
OA-CFM/PER =P~S~OAF ..

Sx*x** OPERATION.OF ZONE—P- PLENUM * % % % ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ke ok ok ok ok o
P-ALL =ZONE . ; s 5
ZONE-TYPE=PLENUM ..

$(**** OPERATION OF ZONE_R AEKAKEAA A AA A AT A AA A AA A AT AA A AR AR AR A AR A AR A AR AR A A ARk A kk

LOBBY =ZONE : e :
ZONE-TYPE=CONDITIONED AN RN
ZONE-AIR=Z-AIR-R '
ZONE~CONTROL=Z-CONTROL-R". .-

=ZONE LIKE LOBBY ..

OFF-SW’ ‘

OFF-SM . . : =ZONE .LIKE LOBBY ...
OFF-SE =ZONE LIKE LOBBY ..
COPY-R =ZONE: LIKE LOBBY ..
MEET-R =ZONE LIKE LOBBY ..
OFF-NW =ZONE LIKE LOBBY ...
OFF-NE =ZONE LIKE LOBBY ..
MEN : =ZONE.LIKE LOBBY ..
WOMEN : =ZONE -LIKE -LOBBY - ..
COR-MAIN ‘ZZONE ‘LIKE LOBBY ..

COR-REST =ZONE LIKE LOBBY ..

$**** SYSTEM CONTROL SCHEDULE LR R SRR R R AR RS R RS SRR R R RS RRR R Rl R R RE RS RS RS

HEATINGSCH ' =SCHEDULE THRU DEC 31 (ALL). (1,24) (1) ..
COOLINGSCH =SCHEDULE. THRU DEC 31 (ALL) (1,24) (1) ..
SYSFANSCH =SCHEDULE THRU DEC 31 (ALL) (1,24) (1)

$‘ *kk*k SYSTEM CONTROL AEEEEEEEEEE A EEAAEAA A AA A AA A AA KRR AR AR A AR AR A A A A Ak d bk d ok d Kk

S-CONTROL = SYSTEM-CONTROL'
MAX-SUPPLY-T=95
- MIN-SUPPLY-T=55 )
HEATING-SCHEDULE=HEATINGSCH
COOLING-SCHEDULE=COOLINGSCH
*COOL-CONTROL=CONSTANT
‘COOL-SET-T=55 ..

$**** SYSTEM AIR AEKIEKE A A A A A AT A A A A A A A A A A AR A AR AR AR KRR KRR KRR KRR AR A ARk kA dhkddddx

S-AIR = SYSTEM-AIR
: OA-CONTROL=P-S-OAC ..
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$**x*x%x. SYSTEM FANS *******************;***************************************
S-FAN =SYSTEM-FANS

‘FAN—SCHEDULE=SYSFANSCH

FAN-CONTROL=P-S-FCT

.SUPPLY-DELTA-T=P-S-FDT

SUPPLY-KW=P-S-FPC

MOTOR-PLACEMENT=P-S-FMP

FAN- PLACEMENT P~ S -FPM-..

S*x* %% SYSTEM TERMINAL R R T R e R T S R T

S-TERMINAL '=SYSTEM-TERMINAL
REHEAT-DELTA-T=P-S-RDT
MIN-CFM-RATIO=P-S-MCR ..

$**** SYSTEM QOPERATION ***‘A:******************;\'*******************************
AHU1 = =SYSTEM - : : . <

SYSTEM-TYPE=P-S-SYT : ‘

SYSTEM-CONTROL=S-CONTROL

SYSTEM-AIR=S-AIR

SYSTEM-FANS=S-FAN

SYSTEM-TERMINAL=S-TERMINAL

HEAT~-SOURCE=HOT-WATER

SIZING-OPTION=COINCIDENT

RETURN-AIR-PATH=PLENUM-ZONES

PLENUM-NAMES= (P-ALL)

ZONE-NAMES= (LOBBY, OFF-SW, OFF~SM, OFF-SE, COPY~R, MEET-R,

OFF-NW, OFF-NE, MEN, WOMEN, COR-MAIN, COR-REST, P-ALL) ..

PLANT1 =PLANT-ASSIGNMENT ' SYSTEM-NAMES=(AHUl) ..

END .. ‘ :
COMPUTE  SYSTEMS ...

$**** PLANT: STARTING ****xkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkhkkk kkkkddkkdkkkkkkkkkx

-

INPUT PLANT ..

$****PARAMETERS FOR PLANT: START LSRR R R SRR R E R RS SRR R RS RRSS R R REREEEREREE]
PARAMETER P-P-CST=42 ..

PARAMETER P-P-CTR=3.5 ..

PARAMETER P-P-CMT=65 ..

PARAMETER P-P-CCP=0.06 ..

PARAMETER P-P-CGB=0.5 ..

PARAMETER P-P-CDT=9 ..

PARAMETER P-P-CPH=60 ..

PARAMETER P-P-CIE=0.8 ..

PARAMETER P-P- ch=o.01 ..

PARAMETER P-P-CME=0.85 .. \
PARAMETER P-P-HBL=0.04 .. - :
PARAMETER P-P-HDT=30 ..

PARAMETER P-P-HPH=60 ..

PARAMETER P-P-HIE=0.8 ..

PARAMETER P-P-HPL=0.01 ..

PARAMETER P-P-HME=0.85 ..

S***x DPARAMETERS FOR PLANT: END %% %%k okokkxok ok ook %ok ook k% % % ok ok % ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok
PLANT1 = PLANT-ASSIGNMENT ..

PLANT-REPORT VERIFICATION=(PV-A)
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SUMMARY= (PS-A, PS-B, PS-C, PS-D, PS-E, PS-F, PS~H, BEPS, BEPU)
$ PV-A: EQUIPMENT SIZES ’ ’

$ PS~A: PLANT UTILIZATION SUMMARY

$ PS-B: MONTHLY PEAK AND TOTAL ENERGY USE

$ PS-C: EQUIPMENT PART LOAD OPERATION

$ PS-D: PLANT LOADS SATISFIED

$ PS-E: MONTHLY ENERGY END USE SUMMARY

$ PS-F: ENERGY RESOURCE PEAK BREAKDOWN BY END USE

$ PS-H: EQULPMENT USE STATISTICS

$ BEPS: BUILDING ENERGY PERFORMANCE SUMMARY

$ BEPU: BUILDING ENERGY PERFORMANCE SUMMARY (UTILITY UNITS)

- P-CHILLER PLANT-EQUIPMENT TYPE=HERM-CENT-CHLR ' SIZE=-999 ..
P-BOILER PLANT-EQUIPMENT TYPE=ELEC-HW-BOILER ' SIZE=-999 ..

PLANT-PARAMETERS CHILL-WTR-T=P-P-CST
‘ : -+ CHILL-WTR-THROTTLE=P-P-CTR
MIN-COND-AIR-T=P~P-CMT
HERM-CENT-COND-PWR=P-P-CCP
HERM-CENT-~COND-TYPE=AIR
HERM-CENT-UNL-RAT=P-P-CGB
CCIRC-DESIGN-T-DROP=P-P-CDT
CCIRC-HEAD=P-P-CPH
CCIRC-IMPELLER-EFF=P-P-CIE
CCIRC-LOSS=P-P-CPL )
..CCIRC-MOTOR-EFF=P-P-CME
E-HW-BOILER-LOSS=P-P-HBL
HCIRC-DESIGN-T-DROP=P-P-HDT
HCIRC-HEAD=P-P-HPH
. ~ HCIRC-IMPELLER-EFF=P-P-HIE
’ HCIRC-LOSS=P-P-HPL
HCIRC-MOTOR-EFF=P-P-HME ..

DIAGNOSTIC COMMENTS
WARNINGS ..

END .. .
COMPUTE PLANT ..

STOP ..



APPENDIX B

DIFFERENTIAL’SENSITIVITY ANALYSIS ON 40 INPUT PARAMETERS

L-BLA, Building Azimuth

. [Sensitivity Coefficients]
é 202.5 5C1=,0.0389 -
s SC2 = 0.0043
g SC3 =0.0029
'_.3- .
g 202 [R? of Regression]
2 Linear = 0.9894 -
3
> 201.5}
5.
5
[ =4
LL’ .
S 201}
c
c
< .
o 15 - 30 45 !
L-BLA (DEGREE)
L-WSC, Window Shading Coefficient
- i " ' [Sensitivity Coefficients]
é 220 SC1 = 60.8963
= SC2 =0.1582
5 210} SC3=0.1819
| E’ 200 [R2 of Regression]
3
@ Linear = 0.9847
"8 190
>
E’) .
2 1801
w
g 170+
[ =4
< 160t




Annual Energy Consumption (MWh)

N
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Annual Energy Consumption (MWh)

200.92

200.9}

200.88

200.86 |

200.84 |

L-WGC, Window Glass Conductance

190

180+

-
~
o

01 04 07 -1 13 16

L-WGC (BTU/HR-SQFT-F)

L-WNP, Window Number of Panes

80

[Sensitivity Coefficients]

' SC1 = 26.4477

SC2 = 0.1155
SC3 =0.1317

[R2 of Regression]
Linear = 0.9740

[Sensitivity Coefficients]
SC1=0.0485
SC2 = 0.0005
SC3 = 0.0005

[R? of Regression]
Linear = 0.7500
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L-SAT, Space Air Temperature

64 66 68 70 72 74 76
L-SAT (F)

L-FR, Infiltration Rate

[ N
[=] o
(3] =]

N
(=N
=X

1 L

0 02 04 06 08 1 12
'L-IFR (AC/HR)' ‘

[Sensitivity Coefficients]

SC1=-1.1281
S§C2 = -0.3929
SC3 =-0.3932

[R? of Regression]
Linear = 0.9959

[Sensitivity Coefficients]
SC1 = 16.8623

SC2 = 0.0503

SC3 = 0.0504

[R? of Regression]
Linear = 0.9988
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~ L-EPL, Equipment Load

L-EPL (W/SQFT)

L-LTL, Lighting Load
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L-LTL (W/SQFT)

[Sensitivity Coefficients]
SC1=14.3494

SC2 =0.1429

SC3 = 0.1429

[R? of Regression]
Linear = 1.0000

[Sensitivity Coefficients]
SC1=13.0556

SC2 = 0.0975

SC3 =0.0975

[R2 of Regression]
Linear = 1.0000



L-LTT, Lighting Type

[Sensitivity Coefficients]

N
(=]
-—
[3)]

3 = REC-FLUOR-NV
4 = REC-FLUOR-RV
5 = REC-FLUOR-RSV

'200.8

§ ' SC1 = 0.1493
S 2014 | sC2=0.0022

5 2013  8C3=0.0015
'..g- . -

£ 201.2  [R? of Regression]
2 , Linear = 0.6754
8 201.1

> [L-LTT]

E; 201 1 = INCAND

W 200.9 2 = SUS-FLUOR
g

[

c

<

L-OPD, Occupant Density -

[Sensitivity Coefficients]

24Q 1.. 8C1=2262.4188
$C2=0.1898
290 SC3 = 0.2253 E

[R2 of Regreséion] '
Linear = 0.9899

180}

160

Annual Energy Consumption (MWh)
S
o

0.0025 0.01 . 0.02 - 0.04
L-OPD (PERSON/SQFT)
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230
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Annual Energy Consumption (MWh)

200

180

Annual Energy Consumption (MWh)

220}

. 8-SYT, System Type -

VAVS ‘ . RHFS
S-SYT

S-CSP, Cooling Set Point

190}

66 68 70 72 74 76
S-CSP (F)

[Sensitivity Coefficients]
SC1 = 38.9480

- 8C2 = 0.2652

SC3 = 0.1939

[R? of Regression]
Linear = 1.0000

[Sensitivity Coefficients]

SC1 = -5.6395
SC2 =-1.9370
SC3 =-2.0218

- [R® of Regression]

Linear = 0.9943
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S-HSP, Heating Set Point
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S-TST, Thermostat Type '
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[Sensitivity Coefficients]
SC1=23.2167

-8C2 = 1.0970:

SC3 = 1.0892

[R2 of Regression)
Linear = 0.9371

[Sensitivity Coefficients]
SC1=5.9295
SC2 = 0.0578
SC3 = 0.0295

[R2 of Regression]
Linear = 0.7962

[S-TST]

1 = PROPORTIONAL
2 = TWO-POSITION

3 = REVERSE-ACTION
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Annual Energy Consumption (MWh)

220
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190
180

170

Annual Energy Consumptidn (M'Wh)‘

. 8-TTR, Throttling Range

201.5}

200.5¢

025 1 2 4

S-TTR (F)

S-OAF, Outdoor Air Flow Rate

200t

1 7 13 19 26 31
S-OAF (CFM/PERSON)

[Sensitivity Coefficients]

SC1=-0.3790
- 8C2 = -0.0029
SC3 = -0.0038

[R? of Regression]
Linear = 0.9695

[Sensiti\}ity Coefficients]
SC1 = 1.8681

~SC2 = 0.1558

SC3=0.1767
[R2 of Regression)
Linear = 0.9691
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S-OAC, Outdoor Air Control

[Sensitivity Coefficients]
SC1=-1.1625

SC2 =-0.0115 -

SC3 =-0.0116

203
202.5

[R? of Regression]
Linear = 0.7629

- 202
201.5

201+

Annual Energy Consumption (MWh)

S-FDT, Fan Air Delta T

[Sensitivity Coefficients]
SC1 = 2.6660
SC2 =0.0542

SC3 =0.0796

210¢

205} 2 .
[R® of Regression]
Linear = 0.7953

200}

Annual Energy Consumption (MWh)
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S-FPC, Fan Power Consumption -

S-FPC (KW/CFM)

S-FCT, Fan Control

240}
230|
220}
210}
200}
190}
180}
170}

[Sensitivity Coefficients]
SC1 = 18324.5753
SC2 = 0.1475

-~ 8C3=10.1825

[R? of Regression]
Linear = 1.0000

x 103

[Sensitivity Coefficients]

-SC1 = 18.3682

SC2 = 0.2674
8C3=10.2744

[R2 of Regression]
Linear = 0.9697

[S-FCT]

1=SPEED

2 =CYCLING

3 = INLET

4 = DISCHARGE

5 = CONSTANT-VOLUME
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Annual Energy Consumption (MWh)

Annual Energy Consumption (MWh) i

S-FMP, Fan Motor Placement

220
215/
210}

89

[Sensitivity Coefficients]
SC1 = 0.0000
SC2 = 0.0000
SC3 =.0.0000

205} [ﬁz of Regression]
200l D. o | Linear = 1.0000
195 ]
1QQ !
185 ]

|N-A|R’FLOW OUTSlDE-'AlRFLOW

S-FMP ~

. 8-FPM, Fan Placement

201
200.5
200}
199.5}

199}
198.5

198 -

197.5¢

BLOW-THROUGH
S-FPM

[Sensitivity Coefficients]
SC1=23.1180 .
SC2 =0.0235

© SC3=0.0311

[R? of Regression]
Linear = 1.0000

1

DRAW-THROUGH
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Annual Energy Consumption (MWh)
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240

220+

200t

180

S-RDT, Reheat Delta T

—

45

50 55 60
S-RDT (F)

S-MCR, Minimum CFM Ratio

65

0.5

N

[Sensitivity Coeflicients]
S SC1 = 0.0000

SC2 = 0.0000

SC3 = 0.0000

[R? of Regression]

~ Linear = 1.0000

[Sensitivity Coefficients]
SC1.= 182.1820
SC2=0.2634
$C3=0.1814

[R2 of Regression]
Linear = 0.9441
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Annual Energy Consumption (MWh)

200.95
200.9
200.85
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200.75
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200.6
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199.5}

P-CST, Chilled Water Supply T . -

‘ L ' s |

38

40 42 44 46 48
P-CST (F)

S

P-CTR, Chilled Water Throttling Range

1.5

25 35 . 45
P-CTR (F)

N

[Sensitivity Coefficients]

SC1=-0.3617
SC2 = -0.0774
SC3 =-0.0756

[R2 of Regression]
Linear = 0.9305

[Sensitivity Coefficients]
SC1=0.1157
SC2 =0.0017
SC3 = 0.0020

[R? of Regression]
Linear = 0.9989
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Annual Energy Consumption (MWh)

Annual Energy Consumption (MWh)

P-CMT, Chilled Water Minimum Entering Air T .

201.5}
201+

200.5+

P-CCP, Chilled Water Condenser Power Ratio
210}

205

200

195

190!

P-CMT (F)

T

0.02

0.04

0.06

P-CCP

. 0.08

[Sensitivity Coefficients]
SC1=10.0912
SC2=0.0284
SC3=0.0295

[VR2 of Regression}
Linear = 0.8794 -

[Sensitivity Coeflicients]
SC1 = 275.5500
SC2=0.0823

SC3 =0.0823

[R? of Regression]
Linear = 1.0000
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P-CGB, Chilled Water Hot Gas Bypass PLR
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[Sensitivity Coefficients]
SC1 =28.2314

8C2 = 0.0635
SC3=0.0703

[R? of Regression]
Linear = 0.9784

[Sensitivity Coeflicients]

SC1 = -0.9620
SC2 =-0.0480
SC3 =-0.0431

[R? of Regression]
Linear = 0.9688



P-CPH, Chilled Water Pump Head
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P-CIE, Chilled Water Pump Impeller Efficiency

60 -
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100

201}

200 ¢

Annual Energy Consumption (MWh)
S
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0.6

0.7

P-CIE

0.8

94

U

[Sensitivity Coefficients]
SC1=0.1655

SC2 =0.0494
SC3=0.0494

[R? of Regression)
Linear = 1.0000

[Sensitivity Coefficients]

SC1 = -14.6450
SC2 = -0.0544
SC3 = -0.0583

[R2 of Regression]
Linear = 0.9857



P-CPL, Chilled Water Fraction of Pump Loss

—T T T T

. [Sensitivity Coeficients]

g 205 SC1 = 404.3600
= SC2 = 0.0250
‘S’ 204 SC3 =0.0201
B 203 )
g [R* of Regression]
a 202 Linear = 1.0000
8 - , {
5 201
g
w 200
®
2 199
<

0.005 - -.0.01: 0.015 0.02

P-CPL

P-CME, Chilled Water Pump Motor Efficiency

— 201 [Sensitivity Coefficients]
S 2012 1 sc1=-6.2220

= 8C2 =-0.0271

5 201t SC3 =-0.0263
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g 200.8 [B of Regression]
2 Linear = 0.8975
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Annual Energy Consumption (MWh)
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Annual Energy Consumption (MWh)

201

200.9

200.8

P-HBL, Hot Water Boiler Loss

0.005 0.02 0.04 - -0.08
P-HBL '

P-HDT, Hot Water Design Delta T -

200.95¢

200.85}

[Sensitivity Coefficients]
SC1 = 223.9868

SC2 = 0.0349

SC3 = 0.0446

[R? of Regression]
Linear = 1.0000

[Sensitivity Coefficients]

SC1 = -0.0045
SC2 = -0.0007
SC3 = -0.0007

[R? of Regression]
Linear = 0.8721
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- P-HPH, Hot Water Pump Head

20

40

60 -

P-HPH (FT)

80

100

P-HIE, Hot Water Pump Impeller Efficiency

0.6

0.7

P-HIE

0.8

[Sensitivity Coefficients]
SC1=0.0016
SC2 = 0.0005
SC3 =0.0005

[R2 of Regression]
Linear = 0.9998

[Sensitivity- Coefficients]

SC1 =-0.1460
SC2 = -0.0005
SC3 = -0.0006

[R? of Regression]
Linear = 0.9850
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P-HPL, Hot Water Fraction of Pump Loss

= [Sensitivity Coeflicients]
é 203 SC1 = 231.4000

< SC2=0.0144
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P-HME, Hot Water Pump Motor Efficiency

[Sensitivity Coefficients]
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g 20086 SC3 = -0.0040
2 200.84 2 .
g [R< of Regression]
2 200.82 Linear = 0.9973
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