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ABSTRACT 

Sensitivity analysis and Multiple Linear Regression (MLR) are the most 

extensively used techniques in studying the input-output relationship in building 

thermal systems. However, both MLR and most methods for sensitivity analysis 

do not account for nonlinear components embedded in building energy systems. 

Thus, their results might be distorted. 

In this study, the Artificial Neural Networks (ANN) technique was applied 

to sensitivity analysis and modeling of an imaginary small office in order to (a) 

examine how the annual energy consumption responded to 40 building design 

parameters and evaluate relative contributions of these parameters to the 

variation of the building energy performance, and (b) develop models to 

represent the relationship between the annual energy usage with input 

parameters and then use these models to predict energy consumption. The data 

used for sensitivity analysis and modeling were generated by DOE-2.1 E 

simulation program. 

Both Differential Sensitivity Analysis (DSA), the most conventional 

sensitivity analysis method, and ANN techniques were employed to analyze the 

sensitivity of building annual energy consumption to 40 design parameters. The 

relative importance of these parameters to the energy usage was ranked by the 

sensitivity coefficients coming from both DSA and ANN methods. 

The relationship between building energy consumption and input 

parameters was then modeled by both MLR and ANN techniques using the most 



important 5, 10, or 15 parameters yielded in the above sensitivity analysis 

experiments. A comparison of the results demonstrated that: 

1. ANN models were better than MLR models in predicting energy 

consumption because the error between DOE-2.1 E simulation and ANN model 

prediction was smaller than that from MLR models. 

2. ANN sensitivity analysis was better than DSA because models 

developed with ANN-derived important parameters more precisely predicted 

building energy consumption, implying ANN sensitivity analysis more efficiently 

evaluated the relative importance of input parameters. 

The results of this project illustrated that ANN technique can be adopted to 

perform sensitivity analysis and develop models to quantify the input-output 

relationship in building energy systems. The results showed that the ANN 

method had better performance than both DSA and MLR, which have been 

extensively used in building thermal system studies. 
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CHAPTER I 

INTRODUCTION 

Background 

Sensitivity analysis and Multiple Linear Regression (MLR) have been 

extensively used in studying building therf!lal systems (Katipamula, Reddy, & 

Claridge, 1998; Lam & Hui, 1996; Lomas & Eppel, 1992). 

The aim of sensitivity analysis is to observe how the building energy 

performance responds to the changes of design parameters and further evaluate 

the relative importance of these parameters. Sensitivity analysis is a general 

concept and there is no formal or well-defined procedure for performing 

sensitivity analysis (Lam & Hui, 1996). Different researchers use different 

approaches to examine the sensitivity of the output of a system to the changes of 
' 

input parameters. Lomas and Eppel (1992) reviewed and compared three 

techniques, Differential Sensitivity Analysis (DSA), Monte Carlo Analysis (MCA), 

and Stochastic Sensitivity Analysis (SSA) for thermal systems and building 

energy simulation. DSA is the most extensively used one in previous studies 

(Carr:imarata, Fichera., & Marietta, 1993; Corson, 1992; Lam & Hui, 1996; Lomas 

& Eppel, 1992), in which the first-order differential sensitivity coefficient is 

employed to assess the sensitivity of the output with respect to input parameters, 

which is also termed as influence ~efficient (Spitler, Fisher, & Zietlow; 1989). 
I 

This method has been proved to be efficient to reveal relative contribution of 

input parameters to the output (Lam & Hui, 1996). 
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However, sensitivity coefficient defined by the DSA method only reflects 

the linear component of the sensitivity of the output to the input parameters 

studied. The nonlinear part is omitted and not addressed. Actually, none of 

methods for sensitivity analysis so far can simultaneously (a) correctly account 

for nonlinearity embedded in the input-output relationship of the system, and (b) 

generate the sensitivity of the output to individual input parameter changes. 

MCA takes nonlinearity into account but individual sensitivities can not be 

obtained through it, while DSA and SSA generate individual sensitivities but they 

assume the system is linear and the effects of input parameters are 

superposable (Lomas & Eppel, 1992). 

Multiple Linear Regression (MLR) is another commonly used method in 
• . I 

building energy performance analysis in which linear mathematical models are 
' 

developed to represent the relationship between building energy consumption 

and design parameters. The reason of the popularity of MLR method is that it is 
I C 

very simple to develop models through it, and the models derived are very easy 

to be utilized into practice compared to those building energy simulation 

programs such as DOE-2 (Bronson, Hinchey, Haberl, & O'Neal, 1992; Copeland, 

1983; Diamond & Hunn, 1981) or simplified systems modeling (Katipamula & 

Claridge, 1993). MLR models have been used to analyze the energy 

consumption in residential buildings (Fels, 1986), commercial buildings 

(Abushakra,.Zmeureanu, & Fazio, 1995; Boonyatikarn, 1982; Haberl & Claridge, 
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1987; MacDonald, 1988; Mazzucchi, 1986; Sullivan & Nozaki, 1984), and even a 

military base (Leslie, Aveta, & Sliwinski, 1986) .. 

,J On the other hand, MLR has its own limitations. One major limitation was 

the regression technique used by most investigators cited above was linear 

regression, either single or multiple param~ters. As described by Bouchlaghem 

and Letherman (1990), the thermal design of buildings is a multi-variable 

optimization problem with non-linear object function and linear constrains on the 

variables, implying the nonlinear input-output connection in building energy 

systems. The relationship between energy performance and design variables in 

buildings is so complicated that simple mathematical equations, like linear 

functions, might not be adequate for its representation. Therefore, the input-
' 

output relationship might be distorted in MLR models since the nonlinearity in the 
' 

system is completely omitted by this method. 

In summary, due to the linear assumption, both DSA and MLR can only 

partly or approximately describe nonlinear systems because only the properties 

of linear co_mponents within the system are correctly revealed. Obviously, 

nonlinear methods probably model building energy system more precisely and 

help design buildings saving more energy which is worthy both economically and 

environmentally. In this study, the artificial neural networks (ANN) technique, 

which is good at nonlinear analysis, was applied to sensitivity analysis and 

building energy consumption modeling. 
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A huge amount of studies in the past 20 years have demonstrated that the 

artificial neural networks, especially multi-layer-forward neural networks with 

supervised learning algorithms, could be successfully applied to a variety of 

problems to extract the input-output relationship of nonlinear systems (Hertz, 

Krogh, & Palmer, 1991 ). It has also been ~sed in .the HVAC thermal dynamic 

, system identification (Teeter & Chow, 1998). 

Essentially, an artificial neural networks is an information processing 

paradigm that is inspired by the way biological nervous systems process 

information. The key element of this paradigm is the novel structure, which is 

composed of a large number of highly interconnected processing elements 

(neurons) working in parallel to solve problems. ANN extracts input-output 
' 

relationship by- learning samples, involving adjustments of the strengths of 
' 

connections (weights) between neurons. After the learning (also called training), 

the input-output relationship will be stored as the weights of connections between . '' 

neurons. 

Since ANN is particularly good at extracting nonlinear input-output 

relationship, it could be able t~ckle the problems existing in sensitivity analysis 

through DSA and modeling through MLR. Through analyzing the structure of 

weights after learning plenty of design parameters and energy consumption data 

pairs, relative contribution of input parameters to the output can be quantitatively 
' -~. 

evaluated. For sensitivity analysis, ANN method not only generates the 

sensitivity of the output to individual input parameter changes but also fully 

4 



accounts for nonlinearity embedded in the input-output relationship of the 
_/ 

system: For building energy consumption modeling, through feeding new input 

values into the networks after learning, the energy consumption could be 

predicted: Because ANN reveals both linear and nonlinear components of the 

relationship between input parameters and.building energy consumption, the 

r prediction of ANN models are expected to be more precise than that of MLR 

'models. 

Statement of Problem 

The intent of this study is to apply Artificial Neural Networks approach to 

sensitivity analysis and prediction of the energy usage of an imaginary small 

office building located in Waterloo, Iowa, in order to (a) examine how the annual . 
building energy consumption responds to 40 building design parameters and 

evaluate relative contributions of these parameters to building energy 

" performance, and (b) create ANN models to represent the relationship between 

annual building energy usage and input parameters, then use them to predict 

building energy consumption under conditions which are not included in the 

database by which the model is developed. The objectives of the present study 

are: 

1. Using building simulation program DOE-2.1 E to develop an imaginary 

small office building located in Iowa. Forty design factors from building load, 

HVAC systems, and HVAC. refrigeration plant are selected as input parameters. 
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The building yearly energy consumption from the report of DOE-2.1 E simulation 

is used as output of the system. 

2. Using DSA method to calculate three different forms of sensitivity 

coefficients for all 40 input parameters in order to study the corresponding effects 

on the simulation output after introducing p~rturbations to the studied 

parameters. By this way, the relative importance of input parameters are 

evaluated. 

3. Besides performed by DSA method, sensitivity analysis of building · 

energy performance is also conducted by using ANN approach. After training a 

two-layer feed-forward artificial neural networks with a number of input-output 

data pairs created by DOE-2.1 E simulations, the sensitivity coefficients of all 40 . 
parameters can be determined by the final values of weights connecting input, 

' 

output, and hidden units. Hopefully the response properties of building energy to 

input parameters can be revealed more precisely compared to DSA in Step 2, 
,, 

because ANN approach is likely to be more powerful in extracting information , 

from nonlinear systems than DSA based sensitivity coefficients which assume 

the system response is linear. 

4. Model the building using both MLR and ANN methods. Input 

parameters used here are 5, 10, or 15 parameters with most importance 

revealed by both DSA in Step 2 and ANN sensitivity study in Step 3. Then 

evaluate the goodness of linear and ANN models by_ comparing their powers in 

predicting building energy consumption under conditions that are not used in 

6 



modeling. At the same time, by comparing the prediction powers of models with 

different sets of input parameters coming form different sensitivity analysis 

methods, it could be identified which sensitivity analysis method is more efficient 

in assessing relative importance of parameters. 

Research· Hypotheses 

The questions that the present study pursue to fulfill are: 

1. Does the neural networks reveal the sensitivity of building energy 

performance to design parameters more efficiently than traditional differential 

sensitivity analysis does? Can it reveal the relative contributions of input 

parameters more precisely? 

2. Compared with linear regression models, does ANN models have more 
! 

prediction power? 

Thus, the equivalent hypotheses to answer these research questions are: 

1. The neural networks is better than DSA methods to perform sensitivity 

analysis because it can more correctly evaluate the relative importance of 

parameters fed into the system: 

2. The neural networks model is stable enough to get acceptable solution. 

Compared to linear regression model, it can predict building energy consumption 

more precisely. 

Assumptions 

1. The database used for both linear regression and neural networks 

training is generated by DOE-2.1 E simulation. This study assumes DOE-2.1 E 
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can accurately simulate the thermal response of the modeled building. Some 

studies have shown that the prediction of DOE~2 simulation matched the 

measured data pretty well (Lee, 1999; Sorrell, Luckenbach, & Phelps, 1985). 

2. This study assumes that the most current personal computers powered 

by Pentium Ill processors are fast enough t9 perform the training of neural 

·~ networks modeling building energy system. Although the artificial neural 

networks have remarkable ability to derive meaning from complicated system, 

. the complexity of its computation is still a main issue of this technique. 

Limitations 

The limitations of this study is presented below: 

1. Using DOE-2 to simulate building energy system is not easy because 
• 

there are a huge amount, usually several hundreds, of input parameters which 
' 

need to be understood and carefully collected by users. The accuracy and 
'\,-

reliability of the database used in this study largely depend on the skill of the 
- I 

author. 

2. Due to the very rapid increase in training time requirements as the 
'" 

number of parameters increases, only a portion of design parameters (40) are 

investigated in this study. The selection of these parameters mostly depends on 

the author's understanding of the modeled building, which is not necessarily to be 

consistent with others. 
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CHAPTER II 

REVIEW OF LITERATURE 

He~ting,Ventilation and.Air Conditioning (HVAC) systems consume as 

much as 50% (Kammers, 1994) or 30-70% (Swanson, 1993) of total building 

energy budget, while buildings approxima!ely use 36% of the. primary energy in 

'-· the United States today (Blum, 1994). Shoureshi (1993) suggested that a mere 

.. 1 ~o improvement in energy efficiency of HVAC systems could save millions of 

dollars annually at the national level. Field surveys also indicated considerable 

energywaste when HAVC systems are poorly operated and maintained 

(Swanson, 1993). Therefore, it makes sense to consider new technologies to 

increase HVAC system performance and efficiency thus save energy. 

Many methods of achieving energy savings have been proposed 

accompanying with the development of HVAC industry, especially after the 
( 

impact of oil crisis and energy crunch in the, 1970s. Most of these building 
' 

, ,,. energy conservation technologies are based on the. studies of how the energy 

performance of buildings is affected by design and operation factors of building 

construction and HVAC systems. Developing building energy saving 

technologies is mostly equivalent to analyzing input-output relationship of 

building energy system, where the input includes design and operation factors, 

the output is the energy consumption. Only after characterizing input-output 

relationship of the building energy system, the building can be designed more 

energy-efficiently by selecting proper design and operation factors. Hence, the 
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essential problem in developing building energy conservation technologies is to 

analyze the input-output relationship of the building energy system. 

There are a variety of empirical and theoretical methods by which the 

input-output relationship of building energy system can be qualitatively or 

quantitatively addressed. In this chapter,_computer building energy simulation, 

sensitivity analysis, and multiple regression techniques are reviewed in 

succession. All these methods have been extensively applied in the study of 

building thermal characteristics. Finally, the Artificial Neural Networks (ANN), 

one of the artificial intelligence techniques, is introduced. 

Building Energy Simulation 

Nowadays, with the aid of rapidly developing computer technologies and 
' 

well established building energy analysis methods, building design and operation 
' 

factors can be systematically examined with building energy simulation programs 

(Hui & Cheung, 1998). Typically; after taking input information including local 

weather, building design, air conditioning system, and operation strategy, the 

approach of "LSPE" (load-system-plant-economics) is used by the dynamic 

simulation programs to simulate the energy'flow in the building modeled (Hui & 

Cheung, 1998). In the "load" stage, the cooling, heating, and fresh air loads are 

calculated based on thermal properties of the building and design criteria in order 

to determine the flow rate and the capacity of the air conditioning system 

(McQuiston & Spitler, 1992). After calculating the load of rooms, simulation 

programs further estimate the energy consumption of the air-side and water-side 
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systems in the "system" stage. Finally, the annual energy consumption of the air 

conditioning plant is determined in the "plant" stage.· The energy consumption of 

the plant is considered as the final energy usage of the building since it provides 

all energy necessary for air conditioning of the rooms and the operation of 

equipment. The energy fed into the plan! can be electricity, gas, oil, hot water, 

,_ cold water, and others. Sometimes, the energy budget is calculated according to 

the local energy prices by carrying out "economics" analysis after plant 

simulation. 

The main difference of building energy simulation from other modeling 

approaches like sensitivity analysis or regression analysis is building energy 

simulation uses physical thermal models to simulate details of building thermal 
' 

system while the others develop simple expressions describing the relationship 
' 

between design parameters and energy consumption which do not account for 

the details of thermal flow in the building. 

There are many different types of computer software available for building 

energy simulation. BLAST (Building Loads Analysis and System 

Thermodynamics) and DOE are milestones in the history of computer building 

energy simulation. They.were developed and released in late 1970s and early 

1980s by the U.S. Army Construction Engineering Research Laboratory 

(USACERL) and the Lawrence Berkeley National Laboratory (http://www.lbl.gov), 

respectively. They were developed for design engineers or architects for sizing 

appropriate HVAC equipment, developing retrofit studies, and optimizing energy 
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performance. However, they were usually used for research purpose in the past/ 

because they are so sophisticated and complicated (Hui & Cheung, 1998). In 

recent years, they are beginning to be adopted by average building designers 
'l 

along with the rapid development of computer technology. In April 2001, a new

generation building energy simulation pr~gram, EnergyPlus 1.0 was released 

"-- · through the Lawrence Berkeley National Laboratory. EnergyPlus 1.0 inherits 

most popular features and capabilities of BLAST and DOE-2. It can be 

considered as'a hybrid of BLAST and DOE-2. 

Beside DOE and BLAST, there are some simulation programs developed 

by commercial companies such as HAP developed by .Carrier Corporation and 
. ' 

TRACE developed by Trane Company. Commercial simulation software are . 
usually easier to use and more accepted by engineers. However, the calculation 

' 

usually is simplified because of the commercial background of developers (Hui & 

Cheu11g, 1998). 
' 

In this study, building energy simulation program DOE-2.1 E is used to 

generate database for sensitivity analysis, m.odel development and testing., Then 

the underlying question is how well the DOE program predicts actual energy 

usage in a building. As part of the DOE-2 Verification Project conducted by the 

Los Alamos Scientific Laboratory, Diamond and Hunn (1981) compared DOE-2 

simulations with measured utility data for a set of seven existing commercial 

buildings of various types in a variety of climate zones: Their results revealed 

that there was a standard deviation of less than 8% and a maximum difference of 
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12% between predicted and measured data for annual total energy budget. In 

the validation study to determine the accuracy of three hourly simulation 

programs, DOE-2.1 B, EMPS_2.1, and TRAP84, Sorrell at al. (1985) concluded 

the accuracy in predicting absolute energy consumption was 5% to 20% for a 
/ 

one to three day period, while generally ~hewing better agreement for a longer 

'-~ · time period. In Lee's validation study (1999), DOE-2.1 E showed very good 

accuracy in predicting cooling and heating energy, with mean errors of 1.9% and 

-6.3%, respectively. All these validation studies suggest that DOE has fairly 

satisfactory accuracy in the prediction of building energy consumption. 

Sensitivity Analysis of Building Energy Performance 

When performing building energy simulations, energy consumption 
' 

_ changes from certain input variables are more significant than those from others, . . 

implying these selected inputs should be given particular attention during 

modeling (Corson, 1992) since they are more important from both technical and 

economic points of view. Hence, they should be designed with utmost care if 

optimization of the system performance is to be achieved. A great deal of 

engineering work is devoted to testing the sensitivity of systems to input variables 

(Deif, 1986). These studies are collectively called sensitivity analysis and involve 

a range of different analytical methods. 

Sensitivity theory has been used for assessing the thermal response of 

buildings and their energy and load characteristics (Athienitis, 1989; Buchberg, 

1969, 1971; Cammarata et al., 1993; Lam & Hui, 1996; Lomas & Eppel, 1992). 
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The·aim of sensitivity analysis is to. evaluate the va~iation of the thermal load due 

to a fluctuation in a given design parameter around its normal value (Cammarata 

et al., 1993). Particularly, Lam and Hui (1996) examined the sensitivity of energy 

performance of office buildings in Hong Kong. They analyzed how the annual 

energy consumption and peak design lo~ds of the model building responded to 

the modification of 60 design parameters, including coefficients of materials 

properties, design of building envelop, and selected HVAC systems, from which 

12 important parameters were yielded. Obviously, if the reiationships and 

relative importance of parameters used in design are well understood, optimal 

building energy performance could be reached through proper selection of 

certain design variables and conditions. 

However, sensitivity analysis is a general concept and there is no formal 
, , 

or well-defined procedures for performing sensitivity analysis (Lam & Hui, 1996). 

In brief, sensitivity analysis could be considered as quantitatively comparing the 

changes in output with the changes in input. Thus, it is an "input-output analysis" 

of the simulation system (Corson, 1992). Sensitivity analysis can be conducted 

on input parameters one by one or on several simultaneously. If input 

parameters are analyzed separately, it has to be assumed that the interactions 

between the inputs can be omitted, i.e., the effects of the inputs are 

superposable. 

Different researchers use different approaches to examine the sensitivity 

of the output of a system to the changes of input parameters. The most common 
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sensitivity analysis is sample-based inwhich the model is executed repeatedly 

for combinations of values sampled from the specific distribution of the input 

parameters .. In general, following step are involved: 

1. Specify the output function and select the input factors of interest. 

2. Assign a distribution to the sele_cted factors. 

3. Randomly generate input combinations within the distribution. 

4. Evaluate the model and compute the distribution of the output. 

5. Select a method fqr assessing the influence or relative importance of 

each factor on the output function. 

In engineering economics, sensitivity analysis measures the economic 

impact from alternative values of uncertain variables that affect the economics of 
( - ! 

the project and the .results can be presented in text, tables, or graphs (Marshall, 
' 

1996). For tnermal systems and building energy simulation, Lomas and Eppel 

(1992) reviewed and compared three techniques, Differential Sensitivity Analysis 

(DSA), Monte Carlo Analysis (MCA), and Stochastic Sensitivity Analysis (SSA). 

DSA involves varying just one input for each simulation while the remaining 

. inputs stay fixed at their mostly likely "base case" values. The changes in the 

output (y) are therefore a direct measure of the effect of the change made in the 

single input parameter (i) .. The value of 11y/11i can be considered as the first-order 

differential sensitivity of the output y with respect to the input i. MCA method is a 

kind of multivariate sensitivity analysis in which all input parameters are 

simultaneously perturbed thus the total uncertainty in the output can be 
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evaluated. The advantage of MCA technique is it fully accounts for the 
; 

interaction between the input parameters. However, the ·sensitivity for individual 

parameter can not be derived. SSA is a relatively new technique in which all 

parameters are varied simultaneously as the simulation progresses, typically at 

every time-step. This is very different fro'!l DSA and MCA in which the uncertain 

"---~ parameters are varied before the simulation then held constant for the duration of 

the simulation. SSA, like DSA, also generates the sensitivity of the output to the 

individual parameter uncertainties. The main attraction of SSA is that information 

about the time-delay response of the outputs, due to the variations in the inputs, 

could be obtained. However, SSA is rarely used because the implementation is 

very difficult which needs access to the simulation program to input stochastic 
• 

information of input parameters. 

Although there are plenty of different methods for sensitivity analysis, DSA 

is the most extensively used one in building energy studies. In previous studies, 
' 

most researchers (Cammarata et al., 1993; Corson, 1992; Lam & Hui, 1996; 

Lomas & Eppel, 1992) employed the first-orderdifferential sensitivity coefficients 

to measure the sensitivity of the output with respect to input parameters, which 

also has been termed as influence coefficient (Spitler et al., 1989). If there are 

more than two perturb~tions used for the input parameter examined, the slope of 

the regression straight line, rather than 11y/11i, could be used to determine the 

sensitivity of building energy performance with respect to a specific design or 
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input parameter. DSA method has been proved to be efficient to reveal relative 

contribution of input parameters to the output (Lam & Hui, 1996). 

However, influence coefficient defined by the DSA method only reflects 
'\ 

the linear component of the sensitivity of output to the input parameters studied. 

It is the "first order sen~itivity." Obvious!~, this approach assumes that the 

,__ · relationship between the output and input parameters is linear. Thus, it is a 

linear estimate of sensitivity of building energy usage, and the nonlinear part of 

the sensitivity of the output is not reflected efficiently. In the present study, 

sensitivity coefficients derived from DSA are used to be compared with the · 

sensitivity coefficient yielded from artificial neural networks method., 

Modeling Buildings Using Multiple Regression 

Another popular approach in building energy investigation is multiple linear 
, 

regression (MLR), in which energy equations are derived from observed or 

computer-generated data to express the relationship between energy 

consumption of buildings and design parameters. Energy equations could.be 

utilized in predicting energy usage and determining retrofit savings. Regression 

' 

analysis models are simple to develop and easy to use compared to those 

building energy simulation programs such as DOE-2 (Bronson et al., 1992; 

Copeland, 1983; Diamond & Hunn, 1981) and simplified systems modeling 

(Katipamula & Claridge, 1993). The input database for regression analysis can 

be created by measured data from real buildings (Katipamula et al., 1998), or by 
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a series of simulations using computer simulation programs like DOE-2 (Lam, 

Hui, & Chan, 1997; Sullivan & Nozaki, 1984). 

Regression models have been used to analyze the energy consumption in 

residential buildings (Fels, 1986), commercial buildings (Abushakra et al., 1995, 

Boonyatikarn, 1982; Haber! & Claridge, 1987; MacDonald, 1988; Mazzucchi, 

"-- 1986; Sullivan & Nozaki, 1984), and even a military base (Leslie et al., 1986). 

The most remarkable advantage of regression analysis is its simplicity, both in 

model developing and application. For model developing, there a~e a lot of 

computer software can be used for conducting regression analysis, such as 

statistics package of SPSS produced by the SPSS Incorporated and statistics 

· toolbox of Matlab produced by the MathWorks. Moreover, the procedure of 
• 

energy consumption prediction using equations derived by regression analysis is 
, 

very easy and fast because regression models only contain a small number of 

parameters, not like other hourly computer simulation programs such as BLAST, 

DOE-2, and TRACE which are too complicated, time-consuming and costly (Lam 

et al., 1997), usually containing hundreds of even more input parameters. 

Although regression approach has been extensively used for building 

energy consumption analysis, it has its own limitations. One major limitation of 

previous studies is the regression technique used by most investigators cited 

above was linear regression, either single or multiple parameters. However, for 

building systems, the relationship between energy performance and design 

variables is so complicated that simple mathematical relationships, like linear 
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functions, are not adequate for its representation. Bouchlaghem and Letherman 

(1990) described the thermal design of buildings as a multi-variable optimization 

problem with non-linear object function with linearconstrains on the variables. 
/ 

Some researchers .have tried to utilize nonlinear models to analyze building 

energy performance. For example, Lam ~nd his colleagues (1997) developed 

~- energy equations through both linear and nonlinear multivariable regression to 

predict building energy consumption. However, the form of their nonlinear 

equations were so specific that it remains unknown if they can be generalized to 

energy consumption studies for different buildings under different conditions. 

In summary, due to the nonlinear nature of the building energy system, 

sensitivity analysis and modeling through linear methods can only partly or 
• 

approximately describe the system because only the properties of linear 
' 

components in the system are correctly revealed. Obviously, nonlinear methods 

could model building energy system more precisely and help design buildings 
' 

saving more energy which is worthy both economically and environmentally. 

Nevertheless, it is not easy to develop nonlinear models for a complex system 

since there_ is no general form of nonlinear equation and no general solution to 

nonlinear systems. Usually, the methods researchers model nonlinear systems 

are to transform nonlinear equations to linear or treat them as linear equations by 

simplifying them. 
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V 

Artificial Neural Networks and Nonlinear Systems 

In recent years, along with the rapid development in computer technology 

and remarkable progress in neurobiology, the Artificial Neural Networks (ANN), a 

kind of artificial intelligence technique which could be applied to an increased 

number of real-world problems of high co'!lplexity; attracts a lot of researches 

· after a long period of frustration and disrepute from the late 1960s to the late 

1970s. A huge amount of studies in past 20 years have shown that the artificial 

neural networks, especially multi-layer-forward neural networks with supervised . 

learning algorithms, have been successfully applied to a variety of problems to 

' extract the input-output relationship of nonlinear systems (Hertz et al., 1991 ). It 

has also been used in the HVAC thermal dynamic system identification (Teeter & 
• 

Chow, 1998) .. 
. ' 

Basically, an artificial neural network is an information processing 

paradigm that is inspired by the way biological nervous systems, such as the 

human brain, process information. The key element of this paradigm is the novel 

structure, which is composed of a large number of highly interconnected 

processing elements (neurons) working in parallel to solve specific problems. 

Figure 1 shows the architecture of a two-layer (input-hidden layer and hidden

output layer) feed-forward artificial neural networks. Each neuron,· denoted by N 

in Figure 1, computes a weighted sum of its inputs, then outputs this sum after a 

transformation which usually is a pure linear or sigmoid (S-shaped) function 

(Hertz et al., 1991 ). ANN extracts input-output relationship by learning samples, 
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which involves adjustments of the strengths (weights) of connections between 

neurons. One sample is one pair of input-output data. The most striking 

advantage of ANN is in solving problems that are too complicated for 

conventional technologies-problems that do not have an algorithmic solution or 

for which an algorithmic solution is too complex to be found. After the learning 

(also called training), the input-output relationship will be stored as the weights of 

connections between neurons. Through analyzing the structure of weights after 

learning, relative contribution of input variables to the output can be quantitatively 

evaluated. Through feeding new input data which is not used for training into the 

networks after learning, the output could be correctly predicted. 

_. 
_. 

Input _. 
unit(i) 

_. 
_. 

Weight(i,j) Weight(j,k) 

Hidden unit(j) 

Output 
unit(k) 

N: neuron 

Figure 1. An example of two-layer feed-forward ANN. 

Since the building energy system is likely to be nonlinear system and it is 

hard to accurately study it through linear techniques, artificial neural networks 

might be a good means to extract the relationship between building energy 

performance and design parameters. 
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In this study, the ANN techni"que is used both in sensitivity analysis and 

building energy system modeling. The main problem of sensitivity analysis 

techniques used in previous studies is none of them could (a) correctly account 

for nonlinearity embedded in the input-output relationship, and (b) generate the 

sensitivity of the output to individual input_parameter changes. DSA and SSA 

,_ generate individual sensitivities but they assume the system is linear and 

superposable. MCA takes nonlinearity into account but individual sensitivities 

can not be obtained through it. There is no question that ANN can efficiently 

extract input-output relationships from nonlinear systems because it has been 

mathematically proved that ANN shown in Figure 1 with one hidden layer 

activated by sigmoid function is enough to approximate any continuous function 
' 

(Cybenko, 1989; Hornik, Stinchcombe, & White, 1989). On the other hand, the 
, 

relative importance of input parameters could be evaluated by the strength of 

weights connecting elements in the neural networks. Therefore, ANN might be a 

good technique for sensitivity analysis, not only generating individual sensitivities 

but also getting rid of linearity assumption occurring in DSA and SSA 

approaches. Moreover, building energy models developed by the ANN 

technique are expected to be better than linear regression models because ANN 

can extract nonlinear components in the relationship between design parameters 

and building energy consumption which are omitted by linear regression models. 

22 



CHAPTER Ill 

METHODOLOGY 

Overview of the Experimental Design 

The Artificial Neural Networks (ANN) was applied to perform sensitivity 

analysis and develop energy consumptio~ models of buildings in the present 

· study. An imaginary small office building located in Waterloo, northeast Iowa 

was used as the model building. Compared to real buildings, imaginary buildings 

have several advantages in quantitative analysis of building energy systems: 

1. Real buildings, such as residential houses, restaurants, and office 

buildings, are designed for specific purposes while an imaginary building can be 

configured with design parameters common to most buildings in a specific 
' 

geographical area. Such a building could be considered as a typical building and 
, 

research. results from it could be generalized to more applications than those 

from specifically designed real buildings. 

2. The design parameters of an imaginary building can be arbitrarily varied 

with computer modeling programs so that a systematic parametric study can be 

conducted. However, the features of a real building can not be changed 

conveniently to study its thermal properties once it is built. 

3. A complicated and expensive measurement system has to be employed 

to monitor the weather, parameters to be studied, and energy consumption, if a 

real building is used. Apparently, modeling imaginary buildings on computers is 

more economical and efficient. 
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Building energy consumption is determined by the weather, building load, 

HVAC system, and refrigeration plant In this study, the weather condition was 

considered to be fixed, using the typical year weather file in TMY2 format for 

Waterloo in Iowa (National Renewable Energy Laboratory, 1995). Load, system, 

and plant were parameterized into 40 in~ut variables. Each parameter had a 

'-- base case reference value, a minimum, and a maximum value, selected from 

common engineering and design practice. The building annual energy 

consumption was investigated as the output of the system, which could be 

considered as the final energy end-use of the building. 

After formulating the base case reference building and selecting 

parameters to be studied, a series of computer experiments as follows were 
' 

conducted: 

1. Simulated the base case building with computer simulation program 

DOE-2.1 E (Lawrence Berkeley Laboratory, 1993). 

2. Introduced perturbations to the selected parameters near their base 

case values, then studied the corresponding effects of the perturbations on 

simulation outputs. Each time only one parameter was varied while all the others 

fixed. 

3 .. Calculated three different forms of sensitivity coefficients for each 

parameter using Differential Sensitivity Analysis (DSA) technique (Lomas & 

Eppel, 1992). 
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4. Generated 1024 input-output data pairs using DOE-2.1 E with all 40 

input parameters randomly distributed from their minimum to maximum values .. 

After training a two-layer feed-forward ANN with. these data pairs, the sensitivity 

coefficients of input parameters were yielded by the weights of ANN . 

. 5. Compared sensitivity coefficien!s derived fmm DSA and ANN methods 

in order to determine important parameters. Important parameters have larger 

sensitivity coefficients and contribute more to the variation of the building energy 

consumption than those less important parameters. 

6. Used both Multiple Linear Regression (MLR) and ANN techniques to 

develop models representing the relationship between design parameters and 

building energy usage. Five, 10, or 15 important parameters ranked by 

sensitivity c?efficients were used in modeling. 

7. Compared prediction accuracy of regression model and ANN model. 
\. 

The accuracy of prediction was measured by Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) of model predicted energy usage with respect 

to DOE-2.1 E simulation results. 

8. By comparing models developed with different sets of important 

parameters coming from different sensitivity coefficients, the efficiencies of both 

DSA and ANN sensitivity analysis methods were evaluated. 

Model Building 

The model building used in this study was an imaginary office building 

located in Waterloo, Iowa. The geographical location of Waterloo is in 42:55 
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degrees north latitude and 92.4 degrees west longitude, and an elevation of 

869.42 feet above sea level. The model building is a small single-story building 

with a total of 2429. 75 ft2 of floor area and 14 feet of building height. 

The main door of the building faces true south in base case although the 

azimuth of the building is a variable in pa!ametric study. The building consists of 

five office rooms, a meeting room, a copier room, two restrooms, a lobby for 

reception, and two corridors, which are divided into 12 cubic spaces for modeling 

convenience in DOE-2.1 E. Figure 2 shows the building layout and Table 1 

summarizes the information of all rooms. Dotted lines in Figure 2 splits the 

continuous space including the lobby and corridors into three cubic spaces 

because cubic spaces are easier to be described than irregular spaces in DOE-
. ! 

2.1 E Buildin,g Description Language (BDL; Lawrence Berkeley Laboratory, 1993). 

Room codes in Table 1 are identifiers of spaces used in DOE-2.1 E simulation 

input files. The building is designed to be single-zone. All rooms use ceiling 

plenums to return air from individual space to the central Air Handling Unit (AHU) 

of the system. All conditioned spaces share a common plenum space between 

ceiling and roof. 

The building has a flat roof which is composed of 2 inch heavy weight 

concrete, 4 inch horizontal air space, 2 inch heavy weight concrete again, 4 inch 

insulation, and 1 inch washed river rock, from inside to outside. Between roof 

and ceiling is the plenum with 5.5 inch of height. Ceiling is 8.5 inch high with 
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average U-value (heat transmissio.n coefficient) 0.317. The floor is 4 inch 

concrete covered by carpet with average U-value 0.609. 

Table 1 

Meeting Room 
(MEET-R) 

Lobby 
(LOBBY) 

Office North West Office North East 
(OFF-NW) • (OFF-NE) 

Corridor Main 
(COR-MAIN) 

Women's 
(WOMEN) 

Men's 
(MEN) 

Corridor Rest 
(COR-REST) 

Office South West Office South Middle Office South East Copier Room 
(OFF-SW) (OFF-SM) (OFF-SE) (COPY-R) 

. Figure 2. Layout of the model building. 

Room Information of the Model Building 

Ceiling Plenum 
Room code .. Description Width (ft) Depth (ft) 

height (ft) height (ft) 
LOBBY Lobby 15.25 21.25 8.5 5.5 

OFF-SW Office south west 13.5 14.25 . 8.5. 5.5 
OFF-SM Office south middle 13.5 14.25 8.5 5.5 
OFF-SE Office south east 15.5 14.25 .8.5 5.5 
COPY-R Copier room 9.25 14.25 8.5 5.5 

COR-MAIN Corridor main 53.75 6.5 8.5 5.5 
MEET-R Meeting room 25.25 15.25 8.5 5.5 
OFF-NW Office north west 13.5 15.25 8.5 5.5 
OFF-NE Office north east 13.5 15.25 · 8.5 5.5 

COR-REST Corridor next to restrooms 4.5 15.75 8.5 5.5 
MEN Men's restroom 10.25 7.5 8.5 5.5 

WOMEN Women's restroom 10.25 7.25 8.5 5.5 
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The exterior walls are horizontally divided into two parts by the ceiling, 

lower part and higher part. Conditioned spaces of the building are surrounded by 

lower exterior walls and the plenum space is surrounded by the higher exterior 

walls. The construction materials layers of exterior walls are similar. From inside 

- to outside, all exterior walls are compos~d of 5/8 inch gypsum board, 3.5 inch 

~- metal stud framing, 3/4 inch vertical air space, 1 inch rigid insulation, and a layer 

of 4 inch or 6 inch heavy concrete. The exterior walls except those of restrooms 

have 5.5 feet high windows located 3.5 feet above the floor level. Each restroom 

' 
has a small window of 1.5 feet height and 2 feet width. 

The building does not have any external shading device. Solar 

absorptances of the exterior walls and roof are 0.65 and 0.29, respectively. The 
' 

inside film resistance of walls and roof, which is combined convective and 
, 

radiative air film-resistance for the inside wall surface, is 0.68. Table 2 describes 

thickness and thermal proP,erties of materials used for the construction layers. 
' 

The materials data in this study was mainly coming from Lee's doctoral 

dissertation (Lee, 1999). In his study, the Energy Resource Station located on 

the campus of the Des Moines Area Community College, Iowa, was used as test 

building. The Energy Resource Station is owned and operated by the Iowa 

Energy Center, and specifically built for building energy research. Therefore, the 

building envelop should be representative of Iowa state. In present study, the 

construction layers of the model building were very similar to those of the Energy 

Resource Station used in Lee's dissertation. 
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Table 2 
Thermal Progerties of Construction Layers 

Layer code Mat. Description T K D Cp R code 

LAY-R1 Inside surface 
CC02 2 in heavy weight concrete 2 0.7576 140 0.2 0.22 
AL23 4 inch horizontal air space 4 0.87 
CC02 2 in heavy weight concrete 2 0.7576 140 0.2 0.22 

Q-VB1* Vapor barrier - 0.06 
IN47 4 in insulation 4 0.0133 1.5 0.38 25.06 

'--- AR02 Single-ply membrane 70 0.35 0.44 
RG02 Washed river rock 1 0.834 55 0.4 0.1 

Outside surface 

LAY-WB1 Inside surface 
GP02 5/8 in gypsum board • 0.625 0.0926 50 0.2 0.56 

Q-VB1* Vapor barrier 0.06 
Q-IN1* Metal stud framing w/ R13 batt 3.5 0.025 0.6 0.2 12.96 
AL11 3/4 in vertical air space 0.75 0.9 
IN43 1 in rigid insulation 1 0.0133 1.5 0.38 6.26 
CC03 4 in pre-cast concrete 4 0.7576 140 0.2 0.44 

Outside surface 

LAY-WT1 Inside surface , 
GP02 5/8 in gypsum board 0.625 0.0926 50 0.2 0.56 

Q-IN1* Metal stud framing w/ R13 batt 3.5 0.025 0.6 0.2 12.96 
AL11 3/4 in vertical air space 0.75 0.9 
IN43 1 in rigid insulation 1 0.0133 1.5 0.38 6.26 
CC04 6 in pre-cast concrete 6 0.7576 140 0.2 0.66 

Outside surface 

LAY-P1 Inside surface 
GP02 0.625 in gypsum board 0.625 0.0926 50 0.2 0.56 

IN13 
Metal stud framing with 

3.5 0.0225 3 0.33 12.96 fiberglass 
GP02 0.625 in gypsum board 0.625 0.0926 50 0.2 0.56 

Outside surface 

Note. T: thickness, inch; K: conductivity, Btu/hr-ft-°F; D: density, lb/ft2; 

Cp: specific heat, Btu/lb-°F; R: resistance, hr-ft2-°F/Btu; 
LAY-R1: layer for roof; LAY-WB1: layer for lower exterior walls below ceiling; 
LAY -:-WT1: layer for higher exterior walls' above ceiling; 
LAY-P1: layer for interior walls separating rooms. 
Material codes without asterisks are standard materials defined in DOE-2.1 E 
material library. The author defined those materials with asterisks. 



Since the model building is imaginary, the design parameters could be 

very flexible. Two HVAC systems, constant-volume reheat fan system (RHFS) 

and variable-volume system with optional reheat (VAVS), were extensively 

modeled on model building. Fourteen system factors were parameterized and 

studied. The HVAC plant was relatively ~imple in this study, which included one 

·~... hermetic centrifugal compression chiller and one electric hot-water boiler. 

Development of DOE-2.1 E Input Files 

Before performing model building simulation with DOE-2.1 E, it is essential 

to determine what input parameters are to be studied. In this study, total 40 

parameters which represented a variety of different factors in model building 

-
design were prepared for analysis. All these parameters are listed in Table 3 and . 
categorized into three main groups as building load, HVAC systems, and HVAC 

' 

refrigeration plant. 

Selecting and defining the input parameters is often a complicated task 

that requires good engineering judgement and knowledge of the simulation 

system. Breakdown of the parameters was worked out according to the building 

description language (BDL) of the DOE-2.1 E program so that maximum 

effectiveness and compatibility could be achieved. 

After determining the design variables to be studied, a base case value 

and a range of different values, termed as perturbations, were assigned to each 

of the input parameters. The base case value is most likely value in practice and 

in this study it was used as a reference in sensitivity analysis to calculate 
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sensitivity coefficients. The perturbation range was used to limit the variation of 

input parameters when generating database for regression and ANN modeling. 

Table 3 
Studied ln~ut Parameters 
Parameter Parameter Description Base case Unit Minimum Maximum index code 

Load 
1 L-BLA Building azimuth 0 Degree 0 45 
2 L-WSC Window shading coefficient 0.6 0 1 
3 L-WGC Window'glass conductance 1.0 Btu/Hr-Ff-F 0.1 1.6 
4 L-WNP Window number of panes 2 3 
5 L-SAT Space air temperature 70 F 64 76 
6 L-IFR Infiltration rate 0.6 AC/Hr 0 1.2 
7 L-EPL Equipment load 2.0 W/Ff 1 3 

·8 L-LTL Lighting load 1.5 W/Ff 0.5 2.5 
9 L-LTT Lighting type SUS-FLUOR 
10 L-OPD Occupant density 0.02 Person/Ft2 0.0025 0.04 

System 
11 S-SYT System type VAVS 
12 S-CSP Cooling set point 72 F 66 76 
13 S-HSP Heating set point 68 F 64 74 
14 S-TST Thermostat type PROPORTIONAL 
15 S-JTR Throttling range 2 F 0.25 4 
16 S-OAF Outdoor air flow rate 19 CFM/Person 31 
17 S-OAC Outdoor air control TEMP 
18 S-FDT Fan air delta T 6 F 0 8 
19 S-FPC , Fan power consumption 0.002 KW/CFM 0.00025 0.004 
20 S-FCT Fan control INLET 
21 S-FMP Fan motor placement IN-AIRFLOW 
22 S-FPM Fan placement DRAW-THROUGH 
23 S-RDT Reheat delta T 55 F 45 65 
24 S-MCR Minimum CFM ratio 0.2 0.1 0.5 

Plant 
25 P-CST Chilled water supply T 42 F 38 48 
26 P-CTR Chilled water throttling range 3.5 F . 1.5 4.5 
27 P-CMT Chilled water minimum entering air T 65 F 55 70 
28 P-CCP Chilled water condenser power ratio 0.06 0.02 0.1 
29 · P-CGB Chilled water hot gas bypass PLR 0.5 . 0.2 0.7 
30 P-CDT Chilled water design delta T 9 F 7 13 
31 P-CPH Chilled water pump head 60 f:t 20 100 
32 P-CIE Chilled water pump impeller efficiency 0.8 0.6 0.9 
33 P-CPL . Chilled water fraction of pump loss 0.01 0.005 0.02 
34 P-CME Chilled water pump motor efficiency 0.85 0.8 0.95 
35 P-HBL Hot water boiler loss 0.04 0.005 0.08 
36 P-HDT Hot water design delta T 30 F 10 50 
37 P-HPH Hot water pump head 60 Ft 20 100 
38 P-HIE Hot water pump impeller efficiency 0.8 0.6 0.9 
39 P-HPL Hot water fraction of pump loss 0.01 0.005 0.02 
40 P-HME Hot water pump motor efficiency 0.85 0.8 0.95 
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The base case value of a parameter roughly.sits in the middle in the whole range 

of this parameter. The selecting of the range of perturbations of a parameter is a 

subjective task, mostly from engineering and design practice. The parameter 

ranges in this study were roughly estimated on the basis of values in the 

literature (Lam & Hui, 1996), DOE-2.1 E u_ser's manuals (Lawrence Berkeley 

~ · Laboratory, 1993), and design practice of the author. The base case value, 

minimum and maximum values of all input parameters are listed in Table 3. 

After all parameters to be studied were determined, input files for 

simulation were generated then submitted to DOE-2.1 E program. One set of 

parameter values was.used in one simulation and the annual model building 

energy consumption was extracted from output files of the simulation program . . 
_ Those parameters which were not studied in this study were fixed in default 

' 

values set by DQE.:.2.1 E program. DOE-2.1 E input files were written in Building 

Description Language (BDL). The input file for base case model building is 

presented in Appendix A. 

Differential Sensitivity Coefficients 

Differential Sensitivity Analysis (DSA) technique was used in this study to 

yield sensitivity coefficients in order to measure how much the model building 

energy consumption responded to the changes of different input parameters. 

Sensitivity coefficients were also used to rank.the relative importance of input 

parameters. DSA technique involves varying just one input for each simulation 

whilst the remaining inputs stay fixed at their most likely "base case" values 
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(Lomas & Eppel, 1992). In this study, the procedure of sensitivity analysis of a 

specific parameter was conducted as follows: 

1. Take a parameter to be analyzed. 

2. Select several values as input data set within the range of the 

parameter. The base case value was inc!uded. 

'-- 3. Generate DOE-2.1 E input files. Each input file contained one value 

selected above. All the other parameters were fixed to be base case values. 

4. Run simulation for all input files. 

5. Analyze simulation output files to get building energy consumption 

under all values determined in Step 2. One energy consumption paired with one 

input parameter value. 

6. Do a linear regression between input data set and corresponding 
' 

energy consumption values using least squares method (Khazanie, 1986) in 

order to get the slope of the regression straight line. 

7. Calculate sensitivity coefficients in forms in Table 4. 

Table 4 
Definitions of Differential Sensitivity Coefficients 

Sensitivity 
Coefficients 

SC1 

SC2 

SC3 

Description Definition 

Slope of linear regression line dy I dx 

· Normalized sensitivity coefficient ( dy I dx) I ( mean(y) I mean(x)) 

Normalized sensitivity coefficient ( dy I dx) I ( base(y) I base(x)) 
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Three forms of sensitivity coefficients, denoted as SC1, SC2, and SC3, 

were used to evaluate the sensitivity of the annual energy performance of the 

building to input parameters. Table 4 lists all of them, where xis the input 

parameter studied, y is corresponding energy consumption from DOE-2.1 E 

simulation, dy I dx is the slope of linear regression line, base(y) is the energy 

~ consumption when the input parameter is set to be base case value. These 

forms of sensitivity coefficients have been wholly or partly applied in previous 

studies (Cammarata et al., 1993; Corson, 1992; Lam & Hui, 1996; Lomas & 

Eppel, 1992). 

Artificial Neural Networks (ANN) Method 

The Artificial Neural Networks (ANN) have been successfully appli~d to a 

variety of pr9blems to extract input-output relationship of nonlinear systems. In 

this study, two-layer feed.:.forward neural networks were trained to extract the 

relationship between design parameters and building annual energy 

consumption. The architecture of the ANN used is shown in Figure 3. The 

networks takes parameters as input and outputs the building annual energy 

consumption of the model building. 

The neural networks is composed of two layers: layer from input to hidden 

units and layer from hidden units to output. 1'½-k is the weight from input unit k to 

hidden neuron j; Wq is the weight from hidden neuron j to output neuron i. 

Structures surrounded by dotted line boxes are neurons. Each neuron takes a · 

weighted sum from other neurons or input vector, then outputs it after a 
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transformation by an activation function. In Figure 3, hidden units takes a 

-, weighted sum from input parameters then makes the output after a hyperbolic 

tangent transformation tanh (x) = (ex - e•x) I (ex+ e•x), while output unit O takes 

input from hidden units then outputs the annual energy consumption after a pure 

linear transformation f (x) = x. · 

• • • 

rf.ik 

. : · ...................................... , 
• • • 

V,. 
J 

---···· 

.................................... 

Figure 3. Architecture of the two-layer neural networks. 

· Given an input vector f k, hidden unitj receives a net input 

and produces output 

vj =g1(hj) =g/Iwjkfk). 
k 

Output unit O thus receives 

0 

(3.1) 

(3.2) 
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h; = IW/;Vj :=IWijg1(LWjkqk) (3.3) 
J j k 

and produces the final output 

(3.4) 

Because the output vector of the neural n~tworks used in this study has only one 

element, annual energy usage, i = 1, thus 

o = g2(h1) = g2(Iw;jvj) = g2(Lw;1g1(LWjkqk)) (3.5) 
j j k 

Suppose the output of DOE-2.1 E simulation with the input parameter values q k is 

s, the error measure or cost function of the neural networks 

now becomes 

E[W]=.!.[s-0]2 
2 

(3.6) 

(3.7) 

The ability of rieural networks of extracting input-output relationship comes from 

its competence to learn from a training set of input-output pairs {q", s"} in order 

to derive the input-output relationship. The procedure of learning is also called 

training. For a set of input-output pairs, the cost function becomes 

(3.8) 

The goal of training is to compare the outputs of the network with known target 

output's" then minimize cost function E[WJ by adjusting weights connecting units 
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in the network through specific algorithms. Because the target outputs su are 

used in the training, this learning procedure is supervised learning. 

The most challenging part of the neural networks technique is to develop a 

fast algorithm of weight adjustment. The back-propagation algorithm is central to 

much work on learning in neural networks (Hertz et al:, 1991 ). The algorithm 

gives a prescription for changing the weights in any feed-forward networks to 

learn a training set of input-output pairs. The basis of the back-propagation 

algorithm is simply gradient decent weight updating rule 

8E 
f1W=-17-

8W 

' 

(3.9) 

in which the weights are moved in the direction of the negative gradient of the 

error or cost function, 17 i~. the learning rate. Obviously, equation (3.8) is a 

continuous differentiable function of every weight, so gradient decent weight 

updating rule can be applied in learning to force the error decrease. 

The tralning normally needs multiple weight updating until the error of the 

networks is less than a target error level. Each time of updating, also called one 

"epoch", involves all weights. Completed back-propagation algorithm is 

described in plenty of literatures (Bishop, 1995; Hagan, Demuth, & Beale, 1996; 

Hassoun, 1995; Hertz et al., 1991 ). The brief back-propagation procedure is: · 
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1. Pre~are input-output pairs". Input includes parameters to be studied. 

Output is the correct output of the system. Initialize the weights to small random 

numbers, such as in the range of[-1, 1]. 

2. Compute the error using equation (3.8). 

3. If the error is less than the target error, stop training. 

4. Compute the gradient of the error with respect to every weight. 

5. Update weights according to the updating rule. 

6. Go back to Step 3 for next epoch. 

The basis of the back-propagation algorithm is simple and easy to be 

complemented. However, it is too slow for practical problems. In present study, 

another algorithm named Resilient Back-Propagation (RPROP) was used., The 

main differe~ce of RPROP from basis back-propagation is a different updating 

rule is applied. The RPROP algorithm is much faster than basis back

propagation algorithm. A complete description of RPROP algorithm is given in 

the work of Riedmiller and Braun (1993). 

A method for improving model generalization, early stopping, was used in 

this study. The available data for each training was divided into three subsets 

which were not overlapped. The first set, training set, was used for computing 

the gradient and updating the network weights. The second subset was the 

validation set. The third set, testing set, was used to test the prediction accuracy 

of the networks after training was done. The error on the validation set was 

monitored during the training process. The validation error normally decreases 
r) 
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during the initial phase of training, as does the training set error. However, when 

the networks begins to overfit the data, the error on validation set will typically 

begin to rise. When the validation error increases for a specific number of 

epochs, the training is stopped. In this study, the training stopped when either 

one of following conditions was satisfied: 

1. The error on the training set was less than or equal to the target error. 

2. The validation error did not decrease in the most recent 50 epochs. 

In this study, the number of input units equaled the number of design 

parameters to be studied. The number of output was always 1; which was the 

annual energy consumption of the building. The sizes of training set, validation 

set, and testing set were 1024, 256, and 256 input-output pairs, respectively. All 
' 

input parameters were randomly generated within their ranges specified in Table 
' 

3 then normalized, so that they fell in the range of [0, 1]. The output data were 

generated by DOE-2.1 E simulations. 

The next question is: how many hidden units should be used in the 

networks? In general, the number of hidden units depends on the complexity of 

the problem and there is no common method to know it. If there are too many 

hidden units, the networks maybe too complicated to converge after a lot of 

epochs; if there are too few hidden units, the networks might be not complex 

enough to represent the input-output relationship. A batch of networks with 

different number of hidden units were trained in order to determine how many 
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hidden units were suitable for model building energy system. Figure 4 shows 

Mean Square Errors on testing data set defined as 

1 256 2 

E[W ]! n = 2 ~ [E:oEi.1E -E;etworks] / 256 . (3.10) 

after training the neural networks with a series of different number of hidden 

units. Input parameters of the networks were all 40 design parameters listed in 

Table 3. One _thousand five hundred and thirty six input-output pairs were used 

of which 1024 were used as training set, 256, validation set, and 256, testing set. 

For each number of hidden units, 20 trainings were conducted and the mean 

results were shown in the figure where error bars are standard error of the mean. 

A clear trend is shown that larger number of hidden units generally results in 
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Figure 4. Results of training with different number of hidden units. 
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smaller error on testing. However, larger number of hidden units remarkably 

slows down the training. In present study, 4 hidden units was used in all neural 

networks trainings which was a compromise between computation complexity 

and network performance. 

The networks training program wa~ provided by Dr. Yuxi Fu at University 

· of California at Berkeley, written in C programming language. 

Sensitivity Coefficient Revealed by ANN 

After training, the input-output relationship is represented by the values of 

weights and the architecture of the networks. Through analyzing the weights 

connecting input parameters and the output, the sensitivity of the output to input 
, I ' 

parameters can be quantified. A form of sensitivity coefficient revealed by the 

neural netw~rks for the input parameter i;k was defined in this study as 

(ANNSC)k = Z:abs(WjkWIJ), 
j 

. 

(3.11) 

" where abs(x) returns absolute value of x. Sensitivity coefficient from ANN (ANN 

SC) is the sum of weights connecting the input parameter.with hidden units 

multiplied by the weights from hidden units to the output. 

After all ANN SCs were determined, the relative importance of input 

parameters were sorted by the ANN SCs. Parameters with larger ANN SCs are 

relatively important. 

Developing Building Models 

Multiple Linear Regression (MLR) analysis and ANN were used to develop 

building models. The input parameters used in modeling were 5, 10, or 15 most 
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important parameters ranked by both sensitivity coefficients SC1, SC2, SC3 from 

DSA, and ANN SC from ANN. Therefore, there are 6 main combinations of 

models, MLR5, MLR10, MLR15, ANN5, ANN10, and ANN15, or 24 detailed 

combinations of models, MLR5-SC1, MLR5-SC2, ... , MLR5-ANN SC, ... , 

ANN15-SC1, ANN15-SC2, ... , andANNt5-ANN SC.· 

'-· Same database was used in both MLR and ANN modeling. The database 

was generated by DOE-2.1 E simulations. Data set of modeling (training for 

ANN) contained 1024 input-output pairs; Data set of validation (only used for 

ANN) contained 256 input-output pairs; Data set of testing also contained 256 

input-output pairs. In all data set, 40 design parameters were randomly selected 

within their ranges. 

The prediction power is measured by Mean Absolute Error (MAE) 
. ' 

MAE= (tlEmodel -Edoe-2.IEI) + 256, 
1=! . 

(3.12) 

and Root Mean Square Error (RMSE) 

I 

RMSE-[(t(E_,. -E-m)' )+256 r, (3.13) 

on testing data set, where Emodel is building annual energy consumption predicted 

by models, Edoe-2.1E is the energy annual consumption calculated by DOE-2.1 E 

simulation. 
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Modeling with Multiple Linear Regression 

Multiple Linear Regression (MLR) analysis is the most extensively used 

method in modeling linear systems or approximately modeling nonlinear 

systems. MLR takes observed input-output data pairs to derive linear equations 

expressing input-output relationship of th~ system. · The linear equations derived 

by MLR have simple formats. For example, for MLR15 model, the energy 

equation has the form of: 

(3.14) 

where E is the predicted annual energy consumption, xi is input parameter, ai and 

b are coefficients which need to be figured out by the regression. The Matlab 

statistics toolbox (http://mathworks.com) was used to perform linear regression. 

Modeling with ANN 

Using the same data set, ANN models are also developed. Twenty 

trainings were conducted for ea.ch model. The MAE and RMSE on testing data 

' . 
set was the avarage of 20 trainings. 
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CHAPTER.IV 

RES UL TS AND DISCUSSIONS 

Base Case Model 

The base case model is very important in sensitivity analysis because all 

''y 
subsequent calculations and analysis are based on the comparison with it. Using 

-~ DOE-2.1 E program, a base case model was developed with 40 parameters 

shown in Table 3 under base case values. After simulation with the input file 

presented in Appendix A, the energy performance data of the base case model 

building was extracted from DOE-2.1 E report files. The building consumes 200.8 

Megawatt Hour (MWh) electricity annually. Load peak is 49.6 Kilowatt (KW), 

occurring at 8:00 am, February 2nd. Figure 5 and Figure 6 show compon~nts of 

annual and monthly energy consumption of the base model. Obviously the 
, 

HVACAux 
30% 

Lights 

7% Equipment 

10% 

Space Heat 
41% 

Figure 5. Components in annual energy consumption of the 
base case model. 
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heating is the largest part of the whole energy usage because northeastern Iowa 

has long and cold winter which makes the hea~ng demand very high. The HVAC 

system and plant approximately consume 30% total energy while lights and 

equipment consume 17% totally. Space cooling demand is relatively low due to 

the short or moderate summer in Iowa. f:igure 6 shows the distributions of these 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

~HVACAux 

[!] Space Cool 

f:::l Space Heat 

l!ll Equipment 

151 Lights 

Figure 6. Components in monthly energy consumption of the 
base case model. 

components month by month in the whole year. The heating mostly occurs in 

winter while cooling appears mostly in summer. The lighting and equipment 

energy usage are pretty constant across the whole year, from January to 

December. 

Differential Sensitivity Analysis 

Three forms of sensitivity coefficients SC1, SC2, and SC3 defined in Table 

4 were calculated to evaluate the sensitivity of the annual energy performance of 
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the building to 40 parameters in Table 3. Appendix B lists results of sensitivity 

analysis on all these parameters with DSA method. Figure? is the sensitivity 

analysis of the window shading coefficient, showing how the annual energy 

consumption responds to the changes of window shading coefficient. 

Simulations with 6 perturbations on wind9w shading coefficient were conducted 

'--- with DOE-2.1E program while all other parameters kept fixed. In Figure 7, 

square marker denotes the base case condition, open circles are other 

perturbation values, horizontal axis is window shading coefficients selected within 

L-WSC, Window Shading Coefficient 

0 0.2 0.4 0.6 0.8 1 
L-WSC 

[Sensitivity Coefficients] 
SC1 = 60.8963 
SC2 = 0.1582 
SC3 = 0.1819 

[R2 of Regression] 
Linear= 0.9847 

Figure 7. Sensitivity analysis of window shading coefficient. 

normal ranged defined in Table 3, vertical axis is annual energy consumption in 

MWh extracted from DOE-2.1 E reports, dotted line is linear regression straight 

line, on the right sensitivity coefficients and the coefficient of determination (R2
) of 

the linear regression are listed. The coefficient of determination (R2
) represents 
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the goodness of curve fitting. By comparing the sensitivity coefficients of 

different input parameters, the relative importance or contributions of these input 

parameters can be assessed. Table 5 shows ~he most important 20 parameters 

ranked by sensitivity coefficients. Numbers in the table are parameter indexes by 

'which the parameters can be looked up from Table .3. 

Table 5 
Relative lmgortance of lngut Parameters 

Ranking SC1 SC2 SC3 ANN SC 
1 19 12 12 19 
2 10 13 13 11 
3 33 5 5 20 
4 28 20 20 12 
5 39 11 10 24 
6 35 24 11 2 
7 24 10 19 10 
8 2 2 2 3 .! 

9 11 16 24 13 
10 29 19 16 16 
11 3 7 7 6 
12 ~ 20 3 3 5 
13 6 . 8 8 7 
14 32 28 28 8 
15 7 25 18 32 
16 8 29 25 35 

.17 34 14 29 1 
18 14 32 32 38 
19 12 18 6 40 
20 13 6 31 25 

Figure 8 shows sensitivity coefficients of all parameters normalized by the 

maximum absolute value for each type. The parameters having larger sensitivity 

coefficients should be carefully considered in building and HVAC design and 

operation since they contribute more to building energy consumption. On the 

other side, parameters with smaller sensitivity coefficients are not that important 
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so they can be chosen freely in their normal range because they do not play 

crucial roles in energy conservation. · 

Among all sensitivity coefficients shown in Figure 8, results in forms SC2 

and SC3 c!re similar because all of them were calculated by the slope of linear 

1 regression line normalized by either base case value or mean value. Form SC1 - . 

shows large fluctuation in the value of sensitivity coefficient because the 

amplitude of a parameter greatly depends on its unit. 

Each sensitivity coefficient analysis method has its own advantages and 

disadvantages. For example, the SC1 may have problems when it is used in 

comparing relative importance of different parameters because the value of it 

depends on the unit of the input, and different units for same parameter mfly 

l 
yield very different values of sensitivity coefficient. So it is not expected to be a 

, 

good statistics to evaluate parameter importance. 

Now the problems are: which one is better? Which one is more efficient in 

applications? The most intuitive approach to compare the goodness or 

application efficiency of different sensitivity coefficients is to develop models with 

the most important parameters selected by different sensitivity coefficients, then 

compare the prediction power of these models. The ones yielding better models 

are considered as better sensitivity coefficients. In this study, three differential 

sensitivity coefficients, together with the one revealed by the artificial neural 

networks, were assessed using this approach. 
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Figure 8. Four forms of sensitivity coefficients of 40 parameters. 

Sensitivity Coefficient Revealed by Artificial Neural Networks 

' 

40 

.40 

In this study, the Artificial Neural Networks (ANN) technique was utilized in 

sensitivity analysis. To the author's knowledge, this was the first time that the 

ANN was used for sensitivity analysis in building energy study. A two layer feed

forward ANN showing in Figure 3 was used. In order to calculate ANN SCs of 

design parameters, the networks with all 40 parameters randomly initialized were 

trained. The data used for training incl~ded 1024 pairs for training and 256 pairs 
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for validation. Five hundred trainings were conducted. After each training, the 

ANN SCs for all parameters were computed with the equation (3.11 ). The final 

ANN SC for each parameter was the average from 500 trainings. Figure 8 

shows ANN SCs .for all parameters and the most important 20 parameters 

✓ ranked by ANN SCs are listed in Table 5: The error bars (Standard Error of the 

~- · Mean, SEM) of ANN SCs in Figure 8 are very small, indicating the sensitivity 

analysis using this approach is very robust which can distinguish the relative 

importance of different parameters consistently. 

An obvious conclusion from Figure 8 is that important parameters mostly 

are distributed in parameter categories load and HVAC system and rarely located 

in HVAC plant. 

Models for Energy Consumption Prediction 

Models using MLR and ANN methods were developed successfully. 5, 

10, or 15 most important parameters ranked by both differential sensitivity 

coefficients SC1, sq2, SC3, and ANN SC yielded by neural networks were used 

in modeling.as input parameters. So there are 6 major classes of models (MLR5, 

MLR10, MLR15, ANN5, ANN10, and ANN15) and 24 subclass models (MLR5-

SC1, MLR5-SC2, ... , MLR5-ANN SC, ... , ANN15-SC1, ANN15-SC2, ... , and 

ANN15-ANN SC). 

After each model was created with 1024 pairs of input-output data from 

DOE-2.1 E simulation; 256 pairs testing data were used to measure the prediction 

accuracy. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) 
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defined in equations 3.12 and 3.13 were used as predicti?n accuracy indicators. 

Both of MAE and RMSE were used in order to make sure if data trends and 

conclusions change under different error measures. The results showed that no 
. 

matter which one was used, the conclusions of this project would not change. 

Since the RMSE is the most extensively used statistics to evaluate model 
" . 

prediction a~curacy (Lam et al., 1997; Lee, 1999; Ruch, Chen, Haberl, & 

Claridge, 1993; Sorrell et al., 1995), in the following sections. all results are 

discussed in RMSE. 

Multiple Linear Regression Models 

Figure 9 shows prediction results of MLR15 models based on 15 important 

parameters coming from three DSA and one ANN sensitivity coefficients. Each • 

dot represe~ts the energy consumption from DOE-2.1 E simulaUon (horizontal 

axis) and the predicti0n of the model (vertical axis) for one combination of all 40 

parameters. Totally 256 simulations and predictions are drawn in the figure. 

This result suggests that MLR model with 15 input parameters can predict 

building energy consumption correctly with RMSEs (normalized by mean DOE-

21.E simulation results) of all dots from 14.71 % to 20.62%. Another conclusion 

from this figure is that the model with parameters ranked by ANN sensitivity 

analysis is the best in predicting energy usage, implying the ANN method is 

bette'r than DSA method in sensitivity analysis . 

. MLR10 a.nd MLR5 models have similar prediction trend as that of MLR15 

models. The models coming from ANN SC also has the best prediction 
• • : L 
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performance. The difference of MLR10 and MLR5 models from MLR15 is on the 

r 

accuracy of their pregiction. The. RMSEs of MLR10 and MLR5 models 

are17 .25% and 25.39%, respectively, for ANN SC-derived input parameters, 
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Figure 9. Energy consumption prediction of MLR15 models. 

while it is 14.71% in MLR15-ANN SC model. This is very natural because a 

model with more parameters is more accurate than a mod~I with less 

parameters. The disadvantage of increasing the number of parameters in 
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r -
modeling is the complexity of the model also increases, which usually makes the 

model developing harder and more time-consuming. Figure 10 shows prediction 

results of MLR5 model~, in which the model with parameters coming from ANN 

SC shows best predict)on performance. 

The reason why MLR is extensively used comes from its simplicity which 
. ... ', 

-~- makes the application extremely easy. For example, with the energy equation 

developed by MLR15 models, the annual energy end-use can be easily 

calculated by summing 15 most important design parameters weighted by 

coefficients in equation (3.14). This is much more simple than the procedure of 

DOE-2.1 E simulation in which the energy usage also can be predicted. In DOE-

2.1 E, all details of the building design and HVAC equipment have to be fed into . . 
the simulati?n program although some of them can be set to default values. This 

task is very complicated, time-consuming and hard to be accomplished, 

especially for a new user. This is the reason why DOE-2 programs are mostly 

used in research rather than applications. 

Although MLR models can predict energy consumption reasonably, they 

completely neglect the nonlinear part in the relationship between system input 

and output. Therefore, linear models for a nonlinear system such as building 

energy system may lose information embedded in the database and de~cribe the 

system insufficiently. 
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Figure 10. Energy consumption prediction of MLR5 models. 

Artificial Neural Networks Models 

Using the same data set as used in developing MLR models, ANN models 

were also developed. All ANN5, ANN10 and ANN15 prediction results showed 

that models with parameters yielded by ANN sensitivity analysis had best 

prediction performance compared to models based on differential sensitivity 

coefficients. Models based on SC2 and SC3 showed similar prediction 

performance. The reason is the definitions of SC2 and SC3 are largely 
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7 

equivalent (see Table 4) thus similar important parameters are picked out by 

them. SC1-based models always have worst prediction accuracy because SC1 

is not able to evaluate the relative importance of parameters efficiently due to the 

-1 unit-dependency of the sensitivity coefficient. Figure 11 shows the annual 

energy consumption predicted by ANN1~ models. Data points of ANN SC-based 

~- model mostly distribute along the diagonal dotted line forming a thin belt, 
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implying the DOE-2.1 E results and model prediction match very well in this 

) model. The data points of SC1-, SC2-, and SC3-based model obviously 

distribute more broadly around the diagonal line indicating worse prediction. 

Beside the superiority of ANN sensitivity analysis over conventional 

differential sensitivity analysis, it is also ~hewn that the ANN models have 

stronger prediction power than MLR models. This could be explained by the 

nonlinearity of neural networks. ANN models can extract both linear and 

nonlinear components from the system, while MLR approach only reveals linear 
C 

part of the input-output relationship of a nonlinear system. Figure 12, 13, and 14 
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Figure 12. Comparison of MLR5 and ANN5 models. 

~MLR5 

raANN5 

are prediction accuracy comparisons of MLR and ANN models with 5, 10, and 15 

input parameters, respectively. Figure 12 does not show much difference 

between MLR and ANN models in which MLR models have similar prediction 
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performance to that of ANN models. One possible explanation is that the ability 
I . 

of extracting nonlinear relationship of ANN is not very useful for this case 
~ 

because only five parameters are used and there is not much inter-parameter 

nonlinear interaction. The most obvious finding from this figure is that the models 

based on parameters from ANN sensitiv~ty analysis (ANN SC) have smaller 

RMSEs (or better prediction accuracy) than other models based on SC1, SC2, 

and SC3: The prediction performance of SC1-, SC2-; and SC3-based models 
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Figure 13. Comparison of MLR10 and ANN10 models. 

are roughly same in Figure 12, implying these three sensitivity coefficients have 

similar efficiency if only a few important parameters are to be identifie~. The 

RMS Es in Figure 13 are smaller than those in Figure 12 and those in Figure 14 

are further smaller than those in Figure 13. When the number of parameters 

increase, the model prediction accuracy also increases because models with 

more parameters take more information of input-output relationship into account. 
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From Figure 13, ANN models start to show their ability to extract nonlinear 

relationship. Except ANN1 0-SC1, all other comparisons in Figure 13 show that 

ANN models are better than MLR models in predicting building energy 

consumption. In Figure 14, all ANN models have smaller RMSEs than 

corresponding MLR models. It is likely t~ be true that with more input 

parameters, ANN models can more efficiently extract input-output relationship 

which can not be reflected by linear regression models. Like those in Figure 12, 

models with ANN SC-derived parameters in Figure 13 also predict better than 

models based on SC1, SC2, and SC3, confirming that ANN sensitivity analysis is 

better than conventional differential sensitivity analysis. In Figure 14, ANN SC, 

SC2, and SC3 models have similar prediction accuracy because different 
, I 

sensitivity analysis methods tend to yield similar sets of important parameters 
' 

when the number of parameters needed is increasing. 
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Figure 14. Comparison of MLR15 and ANN15 models. 
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CHAPTERV 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary and Conclusions 

The Artificial Neural Networks (ANN) technique was applied to sensitivity 
. 

analysis and modeling of an imaginary small office located in Iowa, and then 

compared with conventional Differential Sensitivity Analysis (DSA) and Multiple 

Linear Regression (MLR) methods that have been extensively used in studying 

the input-output relationship in building thermal systems. 

The model building was described in DOE-2.1 E Building Description 

Language (BDL; Lawrence Berkeley Laboratory;· 1993). Forty design factors 

' from building load, HVAC systems, and HVAC refrigeration plant were selected 

as input parameters to be studied. The building annual energy consumption from 

the report of DOE-2.1 E simulation was used as the output of the system. 

After model building was developed by DOE-2.1 E, both DSA and ANN 

techniques were used to analyze the sensitivity of building annual energy 

consumption to 40 design parameters. The relative importance of these 

parameters to the variation of energy usage were evaluated by the sensitivity 

coefficients coming from both DSA and ANN analysis. 

Finally, the relationship between building energy consumption and input 

parameters were modeled by both MLR and ANN techniques with the most 

imp_ortant 5, 10, or 15 parameters yielded in above sensitivity analysis 

experiments in order to predict energy performance of the modeled building. 
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The main results and conclusions of this study are: 

1. ANN models are better than MLR models in predicting energy 

consumption because the error between DOE-2.1 E simulation and ANN model 

prediction was smaller than that from MLR models. This is largely due to the 

capacity of the neural networks in extrac_ting input-output information from 

~ nonlinear systems. 

2. ANN sensitivity analysis is better than DSA because models developed 

with ANN-derived important parameters more precisely predicted the building 

energy consumption, implying ANN sensitivity analysis more efficiently evaluated 

the relative importance of input parameters. The results concluded that ANN 

sensitivity analysis could simultaneously account for nonlinearity of the SY.stem 

and generate the sensitivity of the systm output to individual input parameter , 
, 

changes, showing the superiority of ANN sensitivity analysis over conventional 

sensitivity analysis methods like DSA in which the system is assumed to be 
' 

linear, and MCA in which individual sensitivities can not be obtained (Lomas & 

Eppel, 1992). 

3. Both DSA and ANN sensitivity analysis showed that important 

parameters tended to be distributed in HVAC system then building load, and 

rarely located in HVAC plant. This finding roughly agrees with the sensitivity 

analysis on a typical office building located in Hong Kong (Lam & Hui, 1996), 

indicating similar ~~~~ity characteristics of building energy performance can 

be found in different geographical locations. 

60 



The results of this project suggest that ANN technique can be adopted to 

· perform sensitivity.analysis and develop models to quantify the input-output 

relationship in building energy systems. The results showed that the ANN 

method had better performance than both DSA and MLR which have been 

extensively used in building thermal system studies. 

Recommendations 

Thermal characteristics of the building envelop, except some properties of 

window glasses, were not parameterized and investigated in this study due to the 

lack of construction knowledge by the author. Although some studies have 

· shown that the building energy performance was less sensitive to measures 

affecting the building envelop (Corson, 1992; Lam & Hui, 1996), it remain!s 

unknown it'their findings could be generalized to other geographical locations 

under different climate conditions. In the future research, factors regarding 

building envelop thermal properties could be studied. 

The definition of ANN sensitivity coefficient in equation (3.11) is very 

intuitive but not necessarily the best one. The accuracy of it could be affected by _ 

the activation function of the hidden units since the weights before and after 

hidden units are linked by this function. It might be reasonable to try some other 

forms of ANN sensitivity coefficients which take the activation function of hidden 

units into account in the future and compare their efficiency with that of the 

current one. 
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APPENDIX A 

DOE-2.1 E INPUT FILE FOR BASE CASE MODEL 
$**************************************************************************** 
$ FILE INPUT FILE FOR MODEL BUILDING ENERGY SIMULATION UNDER DOE-2.lE *' 
$CREATOR: AUTOMATIC INPUT FILE GENERATOR WRITTEN BY QUAN TANG * 
$VERSION: 3.0 * 
$**************************************************************************** 

$ TIME: 31-0ct-2001 17:10:36 
$ TYPE: BASE CASE 

$ PARAMETER VALUES USED IN CURRENT INPUT FILE 
$ L-BLA O DEGREE 
$ L-WSC 0.6 
$ L-WGC 1.0 BTU/HR-SQFT-F 
$ L-WNP 2 
$ L-SAT 70 F 
$ L-IFR 0.6 AC/HR 
$ L-EPL 2.0 W/SQFT 
$ L-LTL 1.5 W/SQFT 
$ L-LTT SUS-FLUOR 
$ L-OPD 0.02 PERSON/SQFT 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

S-SYT 
S-CSP 
S-HSP 
S-TST 
S-TTR 
S-OAF 
S-OAC 
S-FDT 
S-FPC 
S-FCT 
S-FMP 
s...:FPM 
S-RDT 
S-MCR 
P-CST 
P-CTR 
P-:-CMT 
P-CCP 
P-CGB 
P-CDT 
P-CPH 
P-CIE 
P-CPL 
P-CME 
P-HBL 
P-HDT 
P-HPH 
P-HIE 
P-HPL 
P-HME 

VAVS 
72 F 
68 F 
PROPORTIONAL 
2 F 
i9 CFM/PERSON 
TEMP 
6 F 
0.002 KW/CFM 
INLET 
IN-AIRFLOW 
DRAW-THROUGH 
55 F 
0.2 
42· F 
3.5 F 
65 F 
0.06 
0.5 
9 F 
60 FT 
0.8 
0.01 
0.85 
0.04 
30 F 
60 FT 
0.8 
0.01 
0.85 

Note: P-L-APP = 1/L-OPD in 

Building Azimuth 
Window Shading Coefficient 
Window Glass Conductance 
Window Number of Panes 
Space Air Temperature 
Infiltration Rate 
Equipment Load 
Lighting Load 
Lighting Type 
Occupant Density 
System Type 
Cooling Set Point 
Heating Set Point 
Thermostat Type 
Throttling Range 
Outdoor Air Flow Rate 
Outdoor Air Control 
Fan Air Delta T 
Fan Power Consumption 
Fan Control 
Fan Motor Placement 
Fan Placement 
Reheat Delta T 
Minimum CFM Ratio 
Chilled Water Supply T 
Chilled Water Throttling Range 
Chilled Water Minimum Entering Air T 
Chilled Water Condenser Power Ratio 
Chilled Water Hot Gas Bypass PLR 
Chilled Water Design Delta T 
Chilled Water Pump Head 
Chilled Water Pump Impeller Efficiency 
Chilled Water Fraction of Pump Loss 
Chilled Water Pump Motor Efficiency 
Hot Water Boiler Loss 
Hot Water Design Delta T 
Hot Water Pump Head 
Hot Water Pump Impeller Efficiency 
Hot Water Fraction of Pump Loss 
Hot Water Pump Motor Efficiency 

load parameter list below 

$**** LOAD: STARTING******************************************************** 
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INPUT LOADS 
INPUT-UNITS=ENGLISH OUTPUT-UNITS=ENGLISH .. 

~--$**** PARAMETERS FOR LOAD: START******************************************** 
PARAMETER P-L-BLA=O .. 
PARAMETER P-L-WSC=0.6 .. 
PARAMETER P-L-WGC=l.O .. 
PARAMETER P-L-WNP=2 .. 
PARAMETER P-L-SAT=70 .. 
PARAMETER P-L-IFR=0.6 
PARAMETER P-L-EPL=2.0 .. 
PARAMETER P-L-LTL=l.5 .. 
PARAMETER P-L-LTT=SUS-FLUOR 
PARAMETER P-L-APP=SO 
$**** PARAMETERS FOR LOAD: END********************************************** 

TITLE LINE-1 *MODEL BUILDING INPUT FILE* 
TITLE LINE-3 *AUTHOR: QUAN TANG, 8/2001* 

ABORT ERRORS 
DIAGNOSTIC WARNINGS 

CAUTIONS 

RUN-PERIOD JAN 1 2000 THRU DEC 31 2000 
BUILDING-LOCATION LATITUDE=42.55 

ALTITUDE=869.4226 
AZIMUTH=P-L-BLA 
DAYLIGHT-SAVINGS=NO 

LONGITUDE=92.4 
TIME-ZONE=6 
HOLIDAY=NO 

$BUILDING-SHADE 

LOADS-REPORT $VERIFICATION=(ALL-VERIFICATION) 
VERIFICATION=(LV-A,LV-B,LV-D,LV-E,LV-F,LV-H,LV-I) 
$SUMMARY=(ALL-SUMMARY) 
SUMMARY=(LS-A,LS-C,LS-D,LS-F) 
REPORT_-FREQUENCY=HOURLY 
HOURLY-DATA-SAVE=FORMATTED 

$ LV-A: GENERAL PROJECT AND BUILDING INPUT 
$ LV-B: SUMMARY OF SPACES 
$ LV-D: DETAILS OF EXTERIOR SURFACES 
$ LV-E: DETAILS OF UNDERGROUND SURFACES 
$ LV-F: DETAILS OF INTERIOR SURFACES 
$ LV-H: DETAILS OF WINDOWS 
$ LV-I: DETAILS OF CONSTRUCTIONS 

$ LS-A: SPACE PEAK LOADS SUMMARY 
$ LS-C: BUILDING PEAK LOAD COMPONENTS 
$ LS-D: BUILDING MONTHLY LOADS SUMMARY 
$ LS-F: BUILDING MONTHLY LOAD COMPONENTS IN MBTU 

$**** MATERIAL DEFINITIONS************************************************** 
Q-VBl MATERIAL RESISTANCE=0.06 .. 
Q~INl = MATERIAL THICKNESS=0.2917 

CONDUCTIVITY=0.025 
DENSITY=0.6 
SPECIFIC-HEAT=0.2 .. 

$**** LAYER DEFINITIONS***************************************************** 
LAY-Rl =LAYERS MAT=(RG02,AR02,IN47,Q-VB1,CC02,AL23,CC02) I-F-R =.61 .. 
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LAY-WBl 
LAY-WTl 
LAY-Pl 

=LAYERS MAT=(CC03,IN43,AL11,Q-IN1,Q-VB1,GP02) 
=LAYERS MAT=(CC04,IN43,AL11,Q-IN1,GP02) 
=LAYERS MAT=(GP02,IN13,GP02) 

$**** CONSTRUCTION TYPES OF ROOF, WALL, 
ROOFS =CONSTRUCTION LAYERS=LAY-Rl 
WALL-BOTTOM =CONSTRUCTION LAYERS=LAY-WBl 
WALL-TOP =CONSTRUCTION LAYERS=LAY-WTl 
WALL-INT =CONSTRUCTION LAYERS=LAY-Pl 
CEIL =CONSTRUCTION U-VALUE=0.317 
FLOORG =CONSTRUCTION U-VALUE=0.609 

CEILING, PARTITION, 
ABSORPTANCE=0.29 
ABSORPTANCE=0.65 
ABSORPTANCE=0.65 

I-F-R =.68 
I-F-R =.68 
I-F-R =.68 

GROUND GLOOR **** 

$**** GLASS TYPES.OF WINDOW & GLASS DOOR"************************************ 
WINDOWS =GLASS-TYPE SHADING-COEF=P-L-WSC GLASS-CONDUCTANCE=P-L-WGC 

GDOOR 
PANES=P-L-WNP .. 

=GLASS-TYPE SHADING-COEF=P-L-WSC GLASS-CONDUCTANCE=P-L-WGC 
PANES=P-L-WNP .. 

$**** INTERNAL LOAD SCHEDULE************************************************ 
PPLSCH =SCHEDULE THRU DEC 31 (ALL) (1,7) (0) (8,18) (1) (19,24) (0) 
LGTSCH =SCHEDULE THRU DEC 31 (ALL) (1, 7) (0) (8, 18) (1) (19, 24) (0) 
EQPSCH =SCHEDULE THRU DEC 31 (ALL) (1, 7) (0) (8, 18) (1) (19, 24) (0) 

$**** SET DEFAULT VALUES**************************************************** 

$**** SPACE CONDITIONS OF ALL ROOMS & PLENUMS ******************************* 
ROOM-COND =SPACE-CONDITIONS 

PLENUM-COND 

ZONE-TYPE 
TEMPERATURE 
INF-METHOD 
AIR-CHANGES/HR 
PEOPLE-SCHEDULE 
AREA/PERSON 
PEOPLE-HG::;LAT 
PEOPLE-HG-SENS 
LIGHTING-SCHEDULE 
LIGHTING-TYPE 
LIGHT-TO-SPACE 
LIGHTING-W/SQFT 
EQUIP-SCHEDULE 
EQUIPMENT-W/SQFT 
FLOOR-WEIGHT 

=SPACE-CONDITIONS 
ZONE-TYPE 

=CONDITIONED 
=(P-L-SAT) 
=AIR-CHANGE 
=P-L-IFR 
.=PPLSCH 
=P-L-APP 
=205 
=245 
=LGTSCH 
=P-L-LTT 
=0.8 
=P-L-LTL 
=EQPSCH 
=P-L-EPL 
=20 .. 

=PLENUM .. 

$**** SPACE DESCRIPTION OF ALL PLENUMS ************************************** 

$ PLENUM 1: P-ALL 
P-ALL =SPACE 

X=0.5 Y=0.5 Z=8.5 AZIMUTH=O 
SPACE-CONDITIONS=PLENUM-COND AREA=2553 
VOLUME=l4041.5 FLOOR-WEIGHT=5 

WE-P-ALL 

WS-P-ALL 

=EXTERIOR-WALL 
X=69 Y=O Z=O AZIMUTH=90 HEIGHT=5.5 WIDTH=37 
CONSTRUCTION=WALL-TOP 

=EXTERIOR-WALL 
X=O Y=O Z=O AZIMUTH=180 HEIGHT=5.5 WIDTH=69 
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WW-P-ALL 

WN-P-ALL 

CONSTRUCTION=WALL-TOP 

=EXTERIOR-WALL 
X=O Y=37 Z=O AZIMUTH=270 HEIGHT=S.5 WIDTH=37 
CONSTRUCTION=WALL-TOP 

=EXTERIOR-WALL 
X=69 Y=37 Z=O AZIMUTH=O HEIGHT=5.5 WIDTH=69 
CONSTRUCTION=WALL-TOP 

ROOF-P-ALL =ROOF 
X=O Y=O Z=S.5 AZIMUTH=lBO TILT=O 
HEIGHT=37 .. WIDTH=69 GND-REFLE-CTANCE=O 
CONSTRUCTION=ROOFS 

$**** SPACE DESCRIPTION OF ALL ROOMS**************************************** 

$ SPACE 1: LOBBY, LOBBY 
LOBBY =SPACE 

X=0.5 Y=0.5 Z=O AZIMUTH=O 
SPACE-CONDITIONS=ROOM-COND AREA=324.0625 
VOLUME=2754.51325 .. 

WS-LOBBY =EXTERIOR-WALL 
X=O Y=O Z=O AZIMUTH=lBO HEIGHT=B.5 WIDTH=l5.25 
CONSTRUCTION=WALL-BOTTOM 

DRS-LOBBY =WINDOW 
X=4.625 Y=O HEIGHT=? WIDTH=6 
GLASS-TYPE=WINDOWS 

WW-LOBBY =EXTERIOR-WALL 
X=O Y=21.25 Z=O AZIMUTH=270 
HEIGHT=8.5°WIDTH=21.25 
CONSTRUCTION=WALL-BOTTOM 

WINW-LOBBY =WINDOW 
X=0.125 Y=3.5 HEIGHT=S WIDTH=21 
GLASS-TYPE=WINDOWS 

C-LOBBY ~INTERIOR-WALL 
.HEIGHT=21.25 WIDTH=l5.25 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-LOBBY =UNDERGROUND-FLOOR AREA=73 
CONSTRUCTION=FLOORG .; 

$ SPACE 2: OFF-SW, OFFICE SOUTH-WEST 
OFF-SW =SPACE 

X=l6.25 Y=0.5 Z=O AZIMUTH=O 
SPACE-CONDITIONS=ROOM-COND AREA=l92.375 
VOLUME=l635.1875 .. 

WS-OFF-SW =EXTERIOR-WALL 
X=O Y=O Z=O AZIMUTH=lBO HEIGHT=B.5 WIDTH=l3.5 
CONSTRUCTION=WALL-BOTTOM 

WINS-OFF-SW =WINDOW 
X=0.25 Y=3.5 HEIGHT=5 WIDTH=l3 
GLASS-TYPE=WINDOWS 
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WW-OFF-SW =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=14.25 
NEXT-TO=LOBBY CONSTRUCTION=WALL-INT 

C-OFF~sw =INTERIOR-WALL 
HEIGHT=14.25 WIDTH=13.5 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-OFF-SW =UNDERGROUND-FLOOR AREA=SS.5 
CONSTRUCTION=FLOORG .. 

$ SPACE 3: OFF-SM, OFFICE SOUTH-MIDDLE 
OFF-SM =SPACE 

X=30.25 Y=0.5 Z=O AZIMUTH=O 
SPACE-CONDITIONS=ROOM-COND AREA=192.375 
VOLUME=l635.1875 .. 

WS-OFF-SM =EXTERIOR-WALL 
X=O Y=O Z=O AZIMUTH=180 HEIGHT=S.5 WIDTH=13.5 
CONSTRUCTION=WALL-BOTTOM 

WINS-OFF-SM =WINDOW 
X=0.25 Y=3.5 HEIGHT=S WIDTH=13 
GLASS-TYPE=WINDOWS 

WW-OFF-SM =INTERIOR-WALL 
HEIGHT=S.5 WIDTH=14.25 
NEXT-TO=OFF-SW CONSTRUCTION=WALL-INT 

C-OFF-SM. =INTERIOR-WALL 
HEIGHT=14.25 WIDTH=13.5 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-OFF-SM =UNDERGROUND-FLOOR AREA=SS.5 
CONSTRUCTION=FLOORG .. 

$ SPACE 4: OFF-SE, OFFICE SOUTH EAST 
OFF-SE =SPACE 

X=44.25 Y=0.5 Z=O AZIMUTH=O 
SPACE:CONDITIONS=ROOM-COND AREA=220.875 
VOLUME=1877.4375 .. 

WS-OFF-SE =EXTERIOR-WALL 
X=O Y=O Z=O AZIMUTH=180 HEIGHT=8.5 WIDTH=lS.5 
CONSTRUCTION=WALL-BOTTOM 

WINS-OFF-SE =WINDOW 
X=0.25 Y=3.5 HEIGHT=S WIDTH~lS 
GLASS-TYPE=WINDOWS 

WW-OFF-SE =INTERIOR-WALL 
HEIGHT=8.5 WIDTH=14.25 
NEXT-TO=OFF-SM CONSTRUCTION=WALL-INT 

C-OFF-SE =INTERIOR-WALL 
HEIGHT=14.25 WIDTH=lS.5 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

' 
F-OFF-SE =UNDERGROUND-FLOOR AREA=59.5 
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CONSTRUCTION=FLOORG 

$ SPACE 5: COPY-R, COPIER ROOM 
COPY-R =SPACE· 

X=60.25 Y=0.5 Z=O AZIMUTH=O 
SPACE-CONDITIONS=ROOM-COND AREA=131.8125 
VOLUME=1120.40625 .. 

WE-COPY-R =EXTERIOR-WALL 
X=9.25 Y=O Z=O AZIMUTH=90 HEIGHT=B.5 WIDTH=14.25 
CONSTRUCTION=WALL-BOTTOM .. 

WINE-COPY-R =WINDOW 
X=0.125 Y=3.5 HEIGHT=S WIDTH=14 
GLASS-TYPE=WINDOWS 

WS-COPY-R =EXTERIOR-WALL 
X=O Y=O Z=O AZIMUTH=180 HEIGHT=B.5 WIDTH=9.25 
CONSTRUCTION=WALL-BOTTOM 

WINS-COPY-R =WINDOW 
X=0.125 Y=3.5 HEIGHT=S WIDTH=9 
GLASS-TYPE=WINDOWS 

WW-COPY-R =INTERIOR-WALL 
HEIGHT=8.5 WIDTH=14.25 
NEXT-TO=OFF-SE CONSTRUCTION=WALL-INT 

C-COPY-R =INTERIOR-WALL 
HEIGHT=14.25 WIDTH=9.25 

. NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-COPY-R =UNDERGROUND-FLOOR AREA=47 
CONSTRUCTION=FLOORG 

$ SPACE 6: COR-MAIN, CORRIDOR MAIN 
COR-MAIN =SPACE 

X=lS.75 Y=lS.25 Z=O AZIMUTH=O 
SPACE-CONDITIONS=ROOM-COND AREA=349.375 
VOLUME=2969.6875 .. 

WE-COR-MAIN =EXTERIOR-WALL 
X=53.75 Y=O Z=O AZIMUTH=90 HEIGHT=B.5 WIDTH=6.5 
CONSTRUCTION=WALL-BOTTOM 

DRE-COR-MAIN =WINDOW 
X=l.75 Y=O HEIGHT=? WIDTH=3 
GLASS-TYPE=WINDOWS 

WS2-COR-MAIN =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=l3.5 
NEXT~TO=OFF-SW CONSTRUCTION=WALL-INT 

WS3-COR-MAIN =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=13.5 
NEXT-TO=OFF-SM CONSTRUCTION=WALL-INT 

WS4-COR-MAIN =INTERIOR-WALL 
HEIGHT=8.5 WIDTH=15.5 
NEXT-TO=OFF~SE CONSTRUCTION=WALL-INT 
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WSS-COR-MAIN =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=9.25 
NEXT-TO=COPY-R CONSTRUCTION=WALL-INT 

C-COR-MAIN =INTERIOR-WALL 
HEIGHT=6.5 WIDTH=53.75 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-COR-MAIN =UNDERGROUND-FLOOR AREA=120.5 
CONSTRUCTION=FLOORG 

$ SPACE 7: MEET-R, MEETING ROOM 
MEET-R =SPACE 

X=0.5 Y=22.25 Z=0 AZIMUTH=0 
SPACE-CONDITIONS=ROOM-COND AREA=385.0625 
VOLUME=3273.03125 .; 

WW-MEET-R =EXTERIOR-WALL 
X=0 Y=lS.25 Z=0.AZIMUTH=270 
HEIGHT=B.5 WIDTH=lS.25 
CONSTRUCTION=WALL-BOTTOM 

WINW-MEET-R =WINDOW 
X=0.125 Y=3.5 HEIGHT=S WIDTH=15 
GLASS-TYPE=WINDOWS 

WN-MEET-R =EXTERIOR-WALL 
X=25.25 Y=lS.25 Z=0 AZIMUTH=0 
HEIGHT=B.5 WIDTH=25.25 
CONSTRUCTION=WALL-BOTTOM 

WINN-MEET-R =WINDOW 
X=0.125 Y=3.5 HEIGHT=S WIDTH=25 
GLASS-TYPE=WINDOWS 

WSl-MEET-R =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=lS.25 
NEXT-TO=LOBBY CONSTRUCTION=WALL-INT 

WS6-MEET-R =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=l0 
NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT 

C-MEET-R =INTERIOR-WALL 
HEIGHT=25.25 WIDTH=lS.25 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-MEET-R =UNDERGROUND-FLOOR AREA=Bl 
CONSTRUCTION=FLOORG .. 

$ SPACE 8: OFF-NW, OFFICE NORTH-WEST 
OFF-NW =SPACE 

X=26.25 Y=22.25 Z=0 AZIMUTH=0 
SPACE-CONDITIONS=ROOM-COND AREA=205.875 
VOLUME=1749.9375 .. 

WN-OFF-NW =EXTERIOR-WALL 
X=13.5 Y=lS.25 Z=0 AZIMUTH=0 
HEIGHT=B.5 WIDTH=l3.5 
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CONSTRUCTION=WALL-BOTTOM 

WINN-OFF-NW =WINDOW 
X=0.25 Y=3.5 HEIGHT=S WIDTH=13 
GLASS-TYPE=WINDOWS 

WS-OFF-NW =INTERIOR-WALL 
HEIGHT=S.5 WIDTH=l3.5 
NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT 

WW-OFF-NW =INTERIOR-WALL. 
HEIGHT=S.5 WIDTH=lS.25 
NEXT-TO=MEET-R CONSTRUCTION=WALL-INT 

C-OFF-NW =INTERIOR-WALL 
HEIGHT=lS.25 WIDTH=13.5 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-OFF-NW =UNDERGROUND-FLOOR AREA=57.5 
CONSTRUCTION=FLOORG .. 

$ SPACE 9: OFF-NE, OFFICE NORTH-EAST 
OFF-NE =SPACE 

X=40.25 Y=22.25 Z=0 AZIMUTH=0 
SPACE-CONDITIONS=ROOM-COND AREA=205.875 
VOLUME=l749.9375 .. 

WN-OFF-NE =EXTERIOR-WALL 
X=13.5 Y=lS.25 Z=0 AZIMUTH=0 
HEIGHT=S.5 WIDTH=13.5 
CONSTRUCTION=WALL-BOTTOM 

WINN-OFF-NE =WINDOW 
X=0.25 Y=3.5 HEIGHT=S WIDTH=13 
GLASS-TYPE=WINDOWS 

WS-OFF-NE =INTERIOR-WALL 
HEIGHT=S.5 WIDTH=13.5 
NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT 

WW-OFF-NE"=INTERIOR-WALL 
HEIGHT=S.5 WIDTH=lS.25 
NEXT-TO=OFF-NW CONSTRUCTION=WALL-INT 

C-OFF-NE =INTERIOR-WALL 
HEIGHT=lS.25 WIDTH=13.5 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-OFF-NE =UNDERGROUND-FLOOR AREA=57.5 
CONSTRUCTION=FLOORG .. 

$ SPACE 10: COR-REST, CORRIDOR NEXT TO RESTROOMS 
COR-REST =SPACE 

X=54.25 Y=21.75 Z=0 AZIMUTH=0 
SPACE-CONDITIONS=ROOM-COND AREA=70.875 
VOLUME=602.4375 .. 

WN-COR-REST =EXTERIOR-WALL 
X=4.5 Y=lS.75 Z=0 AZIMUTH=0 
HEIGHT=S.5 WIDTH=4.5 
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CONSTRUCTION=WALL-BOTTOM 

DRN-COR-REST =WINDOW 
X=0.75 Y=0 HEIGHT=7,WIDTH=3 
GLASS-TYPE=WINDOWS 

WW-COR-REST =INTERIOR-WALL 
HEIGHT=8.5 WIDTH=lS.25 
NEXT-TO=OFF-NE CONSTRUCTION=WALL-INT 

C-COR-REST =INTERIOR-WALL 
HEIGHT=lS.75 WIDTH=4.5 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-COR-REST =UNDERGROUND-FLOOR AREA=40.5 
CONSTRUCTION=FLOORG 

$ SPACE 11: MEN, MEN'S RESTROOM 
MEN =SPACE 

X=59.25 Y=22.25 Z=0 AZIMUTH=0 
SPACE-CONDITIONS=ROOM-COND AREA=76.875 
VOLUME=653.4375 .. 

WE-MEN =EXTERIOR-WALL 
X=l0.25 Y=0 Z=0 AZIMUTH=90 
HEIGHT=8.5 WIDTH=7.5 
CONSTRUCTION=WALL-BOTTOM 

WINE-MEN =WINDOW 
HEIGHT=l.5 WIDTH=2 

'GLASS-TYPE=WINDOWS 

WS-MEN =INTERIOR-WALL 
HEIGHT=S. s WIDTH=lO .'2s 
NEXT-TO=COR-MAIN CONSTRUCTION=WALL-INT 

WW-MEN =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=7.5 
NEXT-TO=COR-REST CONSTRUCTION=WALL-INT 

C-MEN =INTERIOR-WALL 
HEIGHT=7.5 WIDTH=l0.25 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-MEN =UNDERGROUND-FLOOR AREA=35.5 
CONSTRUCTION=FLOORG .. 

$ SPACE 12: WOMEN, WOMEN'S RESTROOM 
WOMEN =SPACE 

X=59.25 Y=30.25 Z=0 AZIMUTH=0 
SPACE-CONDITIONS=ROOM-COND AREA=74.3125 
VOLUME=631.65625 .. 

WE-WOMEN =EXTERIOR-WALL 
X=l0.25 Y=0 Z=0 AZIMUTH=90 
HEIGHT=8.5 WIDTH=7.25 
CONSTRUCTION=WALL-BOTTOM 

WINE-WOMEN =WINDOW 
HEIGHT=l.5 WIDTH=2 
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GLASS-TYPE=WINDOWS 

WN-WOMEN =EXTERIOR-WALL 
X=l0.25 Y=7.25 Z=O AZIMUTH=O 
HEIGHT=B.5 WIDTH=l0.25 
CONSTRUCTION=WALL-BOTTOM 

WINN-WOMEN =WINDOW 
HEIGHT=l.5 WIDTH=2 
GLASS-TYPE=WINDOWS 

WS-WOMEN =INTERIOR-WALL 
HEIGHT=S.5 WIDTH=l0.25 
NEXT-TO=MEN CONSTRUCTION=WALL-INT 

WW-WOMEN =INTERIOR-WALL 
HEIGHT=B.5 WIDTH=7.25 
NEXT-TO=COR-REST CONSTRUCTION=WALL-INT 

C-WOMEN =INTERIOR-WALL 
HEIGHT=7.25 WIDTH=l0.25 
NEXT-TOP-ALL CONSTRUCTION=CEIL 

F-WOMEN =UNDERGROUND-FLOOR AREA=35 

END .. 
COMPUTE LOADS 

CONSTRUCTION=FLOORG .. 

$**** SYSTEM:• STARTING****************************************************** 

INPUT SYSTEMS 

$**** PARAMETERS FOR SYSTEM: START****************************************** 
PARAMETER P-S-SYT=VAVS .. 
PARAMETER P-S-CSP=72 .. 
PARAMETER P-S-HSP=68 .. 
PARAMETER P-S-TST=PROPORTIONAL 
PARAMETER P-S-TTR=2 .. 
PARAMETER P-S:OAF=19 .. 
PARAMETER P-S-OAC=TEMP .. 
PARAMETER P-S-FDT=6 .. 
PARAMETER P-S-FPC=0.002 .. 
PARAMETER P-S-FCT=INLET .. 
PARAMETER P-S-FMP=IN-AIRFLOW 
PARAMETER P-S-FPM=DRAW-THROUGH 
PARAMETER P-S-RDT=55 .. 
PARAMETER P-S-MCR=0.2 .. 
$**** PARAMETERS FOR SYSTEM: END******************************************** 

SYSTEMS-REPORT VERIFICATION=(SV-A,SV-B) 
~ SUMMARY =(SS-A,SS-D,SS-H,SS-J) 

REPORT-FREQUENCY=HOURLY 
HOURLY-DATA-SAVE=FORMATTED 

$ SV-A: SYSTEM DESIGN PARAMETERS 
$ SV-B: ZONE FAN DATA 

$ SS-A: SYSTEM MONTHLY LOADS SUMMARY 
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$ SS-D: PLANT MONTHLY LOADS SUMMARY 
$ SS-H: SYSTEM MONTHLY LOADS SUMMARY 
$ SS-J: SYSTEM PEAK HEATING AND COOLING DAYS 

$**** ZONE CONTROL SCHEDULES************************************************ 
HEATTEMPSCH =SCHEDULE THRU DEC 31 (ALL) (1,24) (P-S-HSP) 
COOLTEMPSCH =SCHEDULE THRU DEC 31 (ALL) (1,24) (P-S-CSP) 

$**** ZONE-R CONTROL******************************************************** 
Z-CONTROL-R =ZONE-CONTROL 

DESIGN-HEAT-T=P-S-HSP 
HEAT-TEMP-SCH=HEATTEMPSCH 
DESIGN-COOL-T=P-S-CSP 
COOL-TEMP-SCH=COOLTEMPSCH 
THERMOSTAT-TYPE=P-S-TST 
THROTTLING-RANGE=P-S-TTR .. 

$**** ZONE-R AIR************************************************************ 
Z-AIR-R =ZONE-AIR 

OA-CFM/PER =P-S-OAF .. 

$**** OPERATION OF ZONE-P PLENUM******************************************** 
P-ALL =ZONE 

ZONE-TYPE=PLENUM .. 

$.**** OPERATION OF ZONE-R *************************************************** 
LOBBY =ZONE 

ZONE-TYPE=CONDITIONED 
ZONE-AIR=Z-AIR-R 
ZONE-CONTROL=Z-CONTROL-R 

OFF-SW 
OFF-SM 
OFF-SE 
COPY-R 
MEET-R 
OFF-NW 
OFF-NE 
MEN 
WOMEN 
COR.;.MAIN 
COR-REST 

' =ZONE LIKE LOBBY 

$**** SYSTEM 
HEATINGS CH 
COOLINGSCH 
SYSFANSCH 

=ZONE .LIKE LOBBY 
=ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 
,;.ZONE LIKE LOBBY 
=ZONE LIKE LOBBY 

CONTROL SCHEDULE*********************************************** 
=SCHEDULE THRU DEC 31 (ALL) (1, 24) (1) 
=SCHEDULE THRU DEC 31 (ALL) (1, 24) (1) 
=SCHEDULE THRU DEC 31 (ALL) (1, 24) (1) 

$.****SYSTEM CONTROL******************************************************* 
S-CONTROL = SYSTEM-CONTROL 

MAX-SUPPLY-T=95 
MIN-SUPPLY-T=55 
HEATING-SCHEDULE=HEATINGSCH 
COOLING-SCHEDULE=COOLINGSCH 
COOL-CONTROL=CONSTANT 
COOL-SET-T=55 .. 

$**** SYSTEM'AIR ************************************************************ 
S-AIR SYSTEM-AIR 

OA-CONTROL=P-S-OAC .. 
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$**** SYSTEM FANS*********************************************************** 
S-FAN =SYSTEM-FANS 

' FAN-SCHEDULE=SYSFANSCH 
FAN-CONTROL=P-S-FCT. 
SUPPLY-DELTA-T=P-S-FDT 
SUPPLY-KW=P-S-FPC 
MOTOR-PLACEMENT=P-S-FMP 
FAN-PLACEMENT=P-S~FPM .. 

$**** SYSTEM TERMINAL******************************************************* 
S-TERMINAL =SYSTEM-TERMINAL 

REHEAT-DELTA-T=P-S-RDT 
MIN~CFM-RATIO=P-S-MCR .. 

$**** SYSTEM OPERATION****************************************************** 
AHUl =SYSTEM 

SYSTEM-TYPE=P-S-SYT 
SYSTEM-CONTROL=S-CONTROL 
SYSTEM-AIR=S-AIR 
SYSTEM-FANS=S-FAN 
SYSTEM-TERMINAL=S-TERMINAL 
HEAT-SOURCE=HOT-WATER 
SIZING-OPTION=COINCIDENT 
RETURN-AIR-PATH=PLENUM-ZONES 
PLENUM-NAMES=(P-ALL) 
ZONE-NAMES=(LOBBY,OFF-SW,OFF~SM,OFF-SE,COPY-R,MEET-R, 

OFF-NW,OFF-NE,MEN,WOMEN;coR-MAIN,COR-REST,P-ALL) 

PLANTl =PLANT-ASSIGNMENT SYSTEM-NAMES=(AHUl) 

END .. 
COMPUTE SYSTEMS 

$**** PLANT: STARTING******************************************************* 

INPUT PLANT 

$**** PARAMETERS FOR PLANT: START******************************************* 
PARAMETER P-P-CST=42 .. 
PARAMETER P-P;CTR=3.5 .. 
PARAMETER P-P-CMT=65 .. 
PARAMETER P-P-CCP=0.06 .. 
PARAMETER P-P-CGB=0.5 .. 
PARAMETER P-P-CDT=9 .. 
PARAMETER P-P-CPH=60 .. 
PARAMETER P-P-CIE=0.8 .. 
PARAMETER P-P-CPL=0.01 
PARAMETER P-P-CME=0.85 .. 
PARAMETER P-P-HBL=0.04 .. 
PARAMETER P-P-HDT=30 .. 
PARAMETER P-P-HPH=60 .. 
PARAMETER P-P-HIE=0.8 .. 
PARAMETER P-P-HPL=0.01 .. 
PARAMETER P-P-HME=0.85 .. 
$**** PARAMETERS FOR PLANT: END********************************************* 

PLANTl = PLANT-ASSIGNMENT 

PLANT-REPORT VERIFICATION=(PV-A) 

( 
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$ PV-A: 

$ PS-A: 
$ PS-B: 
$ PS-C: 
$ PS-D: 
$ PS-E: 
$ PS-F: 
$ PS-H: 
$ BEPS: 
$ BEPU: 

SUMMARY=(PS-A,PS-B,PS-C,PS-D,PS-E,PS-F,PS-H,BEPS,BEPU) 
EQUIPMENT SIZES 

PLANT UTILIZATION SUMMARY 
MONTHLY PEAK AND TOTAL ENERGY USE 
EQUIPMENT PART LOAD OPERATION 
PLANT LOADS SATISFIED 
MONTHLY ENERGY END USE SUMMARY 
ENERGY RESOURCE PEAK BREAKDOWN BY END USE 
EQULPMENT USE STATISTICS 
BUILDING ENERGY PERFORMANCE SUMMARY 
BUILDING ENERGY PERFORMANCE SUMMARY (UTILITY UNITS) 

P-CHILLER PLANT-EQUIPMENT 
P-BOILER PLANT-EQUIPMENT 

TYPE=HERM-CENT-CHLR SIZE=-999 
TYPE=ELEC-HW-BOILER SIZE=-999 

PLANT-PARAMETERS CHILL-WTR-T=P-P-CST 
CHILL-WTR-THROTTLE=P-P-CTR 
MIN-COND-AIR-T=P-P-CMT 
HERM-CENT-COND-PWR=P-P-CCP 
HERM-CENT-COND-TYPE=AIR 
HERM-CENT-UNL-RAT=P-P-CGB 
CCIRC-DESIGN-T-DROP=P-P-CDT 
CCIRC-HEAD=P-P-CPH 
CCIRC-IMPELLER-EFF=P-P-CIE 
CCIRC-LOSS=P-P-CPL 
CCIRC-MOTOR-EFF=P-P-CME 
E-HW-BOILER-LOSS=P-P-HBL 
HCIRC-DESIGN-T-DROP=P-P-HDT 
HCIRC-HEAD=P-P-HPH 
HCIRC-IMPELLER-EFF=P-P-HIE 
HCIRC-LOSS=P-P-HPL 
HCIRC-MOTOR-EFF=P-P-HME 

DIAGNOSTIC COMMENTS 
WARNINGS 

END 
COMPUTE PLANT .. 

STOP .. 

I 
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APPENDIX B 

DIFFERENTIAL SENSITIVITY ANALYSIS ON 40 INPUT PARAMETERS 
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L-WSC, Window Shading Coefficient 

0 0.2 0.4 0.6 0.8 1 
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[Sensitivity Coefficients] 
SC1 = 0.0389 
SC2 = 0.0043 
SC3 = 0.0029 

[R2 of Regression] 
Linear= 0.9894 

[Sensitivity Coefficients] 
SC1 = 60.8963 
SC2 = 0.1582 
SC3 = 0.1819 

[R2 of Regression] 
Linear= 0.9847 
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[Sensitivity Coefficients] 
SC1 = 26.4477 
SC2 = 0.1155 
SC3 = 0.1317 

[R2 of Regression] 
Linear= 0.9740 

[Sensitivity Coefficients] 
SC1 = 0.0485 
SC2 = 0.0005 
SC3 = 0.0005 

[R2 of Regression] 
Linear= 0.7500 
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[Sensitivity Coefficients] 
SC1 = -1.1281 
SC2 = -0.3929 
SC3 = -0.3932 

[R2 of Regression] 
Linear= 0.9959 

[Sensitivity Coefficients] 
SC1 = 16.8623 
SC2 = 0.0503 
SC3 = 0.0504 

[R2 of Regression] 
Linear= 0.9988 
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[Sensitivity Coefficients] 
SC1 = 14.3494 
SC2 = 0.1429 
SC3 = 0.1429 

[R2 of Regression] 
Linear= 1.0000 

[Sensitivity Coefficients] 
SC1 = 13.0556 
SC2 = 0.0975 
SC3 = 0.0975 

[R2 of Regression] 
Linear = 1.0000 
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L-L TT, Lighting Type 
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L-LTT 
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L-OPD, Occupant Density 

5 
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L-OPD (PERSON/SOFT) 

[Sensitivity Coefficients] 
SC1 = 0.1493 
SC2 = 0.0022 
SC3 = 0.0015 

[R2 of Regression] 
Linear= 0.6754 

[L-LTT] 
1 = INCAND 
2 = SUS-FLUOR 
3 = REC-FLUOR-NV . 
4 = REC-FLUOR-RV 
5 = REC-FLUOR-RSV 

[Sensitivity Coefficients] 
SC1 = 2262.4188 
SC2 = 0.1898 
SC3 = 0.2253 

[R2 of Regression] 
Linear = 0.9899 
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[Sensiti1.1ty Coefficients] 
SC1 = 38.9480 
SC2 = 0.2652 
SC3 = 0.1939 

[R2 of Regression] 
Linear= 1.0000 

[Sensiti1.1ty Coefficients] 
SC1 = -5.6395 
SC2 = -1.9370 
SC3 = -2.0218 

[R2 of Regression] 
Linear= 0.9943 
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C: •• 

,ex: 200L-...._.,_ •• _·· ____ ~----~----J 
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S~TST 
3 

[Sensitivity Coefficients] 
SC1 = 3.2167 
SC2 = 1.0970 
SC3 = 1.0892 

[R2 of Regression] 
Linear= 0.9371 

[Sensitivity· Coefficients] 
SC1 = 5.9295 
SC2 = 0.0578 
SC3 = 0.0295 

[R2 of Regression] 
Linear= 0.7962 

[S-TSl] 
1 = PROPORTIONAL 
2 = lWO-POSITION 
3 = REVERSE-ACTION 
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[Sensitivity Coefficients] 
SC1 = -0.3790 
SC2 = -0.0029 
SC3 = -0.0038 

[R2 of Regression] 
Linear = 0.9695 

[Sensitivity Coefficients] 
SC1 = 1.8681 
SC2 = 0.1558 
SC3 = 0.1767 

[R2 of Regression] 
Linear = 0.9691 
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[Sensitivity Coefficients] 
SC1 = -1.1625 
SC2 = -0.0115 
SC3 = -0.0116 

[R2 of Regression] 
Linear= 0. 7629 

[Sensitivity Coefficients] 
SC1 = 2.6660 
SC2 = 0.0542 
SC3 = 0.0796 

[R2 of Regression] 
Linear= 0. 7953 
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S-FCT, Fan Control 
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[Sensmvity Coefficients] 
SC1 = 18324.5753 
SC2 = 0.1475 
SC3 = 0.1825 

[R2 of Regression] 
Linear = 1.0000 

4 X 10-3 

5 

[Sensitivity Coefficients] 
SC1 = 18.3682 
SC2 = 0.2674 
SC3 = 0.2744 

[R2 of Regression] 
Linear= 0.9697 

[S-FCl] 
1 = SPEED 
2 = CYCLING 
3 = INLET 
4 = DISCHARGE 
5 = CONSTANT-VOLUME 
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[Sensitivity Coefficients] 
SC1 = 0.0000 
SC2 = 0.0000 
SC3 = 0.0000 

[R2 of Regression] 
Linear= 1.0000 
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[Sensitivity Coefficients] 
SC1 = 3.1180 
SC2 = 0.0235 
SC3 = 0.0311 

[R2 of Regression] 
Linear = 1.0000 

BLOW-THROUGH DRAW-THROUGH 
S-FPM 
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[Sensiti1nty Coefficients] 
SC1 = 0.0000 

1 
SC2 = 0.0000 
SC3 = 0.0000 

[R2 of Regression] 
Linear= 1.0000 

[Sensiti1nty Coefficients] 
SC1 = 182.1820 
SC2 = 0.2634 
SC3 = 0.1814 

[R2 of Regression] 
Linear= 0.9441 
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[Sensitivity Coefficients] 
SC1 = -0.3617 
SC2 = -0.0774 
SC3 = -0.0756 

[R2 of Regression] 
Linear = 0.9305 

[Sensitivity Coefficients] 
SC1 = 0.1157 
SC2 = 0.0017 
SC3 = 0.0020 

[R2 of Regression] 
Linear= 0.9989 
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[Sensiti1nty Coefficients] 
SC1 = 0.0912 
SC2 = 0.0284 
SC3 = 0.0295 

[R2 of Regression] 
Linear= 0.8794 

[Sensiti1nty Coefficients] 
SC1 = 275.5500 
SC2 = 0.0823 
SC3 = 0.0823 

[R2 of Regression] 
Linear = 1.0000 
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(Sensitivity Coefficients] 
SC1 = 28.2314 
SC2 = 0.0635 
SC3 = 0.0703 

[R2 of Regression] 
Linear= 0.9784 

[Sensitivity Coefficients] 
SC1 = -0.9620 
SC2 = -0.0480 
SC3 = -0.0431 

[R2 of Regression] 
Linear= 0.9688 
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[Sensitivity Coefficients] 
SC1 = 0.1655 
SC2 = 0.0494 
SC3 = 0.0494 

[R2 of Regression] 
Linear= 1.0000 

[Sensitivity Coefficients] 
SC1 = -14.6450 
SC2 = -0.0544 
SC3 = -0.0583 

[R2 of Regression] 
Linear= 0.9857 
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[Sensitivity Coefficients] 
, SC1 ;,, 404.3600 

SC2 = 0.0250 
SC3 = 0.0201 

[R2 of Regression] 
Linear= 1.0000 

P-CME, Chilled Water Pump Motor Efficiency 

:2 201.2 
~ 
6 
c: 201 
0 

a 
§ 200.8 
1/l 
C: 

8 
>- 200.6 
ei 
Q) 
C: 

~ 200.4 
Ctl 
::J 
C: 
C: 
<( 200.2 

0.8 0.85 0.9 0.95 
P-CME. 

[Sensitivity Coefficients] 
SC1 = -6.2220 
SC2 = -0.0271 
SC3 = -0.0263 

[R2 of Regression] 
Linear= 0.9975 
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[Sensitivity Coefficients] 
SC1 ;, 223.9868 
SC2 = 0.0349 
SC3 = 0.0446 

[R2 of Regression] 
Linear= 1.0000 

[Sensitivity Coefficients] 
SC1 = -0.0045 
SC2 = -0.0007 
SC3 = -0.0007 

[R2 of Regression] 
Linear = 0.8721 
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[Sensitivity Coefficients] 
SC1 "= 0.0016 
SC2 = 0.0005 
SC3 = 0.0005 

[R2 of Regression] 
Linear= 0.9998 

[Sensitivity Coefficients] 
SC1 = -0.1460 
SC2 = -0.0005 
SC3 = -0.0006 

[R2 of Regression] 
Linear= 0.9850 
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[Sensitivity Coefficients] 
SC1 "= 231.4000 
SC2 = 0.0144 
SC3 = 0.0115 

[R2 of Regression] 
Linear= 1.0000 

[Sensitivity Coefficients] 
SC1 = -0.9460 
SC2 = -0.0041 
SC3 = -0.0040 

[R2 of Regression] 
Linear = 0.9973 

98 


	Application of artificial neural networks to sensitivity analysis and modeling of small office buildings
	Recommended Citation

	tmp.1676405223.pdf.tVbXW

