Iowa Science Teachers Journal

Volume 14 | Number 2

Article 32

1977

An inquiry into Tides

Darrel Hoff University of Northern Iowa

Follow this and additional works at: https://scholarworks.uni.edu/istj

Part of the Science and Mathematics Education Commons

Let us know how access to this document benefits you

Copyright © Copyright 1977 by the Iowa Academy of Science

Recommended Citation

Hoff, Darrel (1977) "An inquiry into Tides," *Iowa Science Teachers Journal*: Vol. 14: No. 2, Article 32. Available at: https://scholarworks.uni.edu/istj/vol14/iss2/32

This Article is brought to you for free and open access by the IAS Journals & Newsletters at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.

AN INQUIRY INTO TIDES

Darrel Hoff Department of Earth Science University of Northern Iowa Cedar Falls, Iowa 50613

Introduction

Classic earth science textbooks present a rather generalized treatment of the topic of tides, but to the majority of mid-westerners the descriptions are largely without intrinsic meaning because of the lack of firsthand experience with marine tides. The suggestion contained herein provides a vicarious experience with tides for landlocked Iowans, that will hopefully stimulate discussion resulting in an improved understanding of tidal phenomena.

Procedure

The data given in Table 1 is reprinted with permission from a U.S. government document, *Tide Tables, High and Low Water Prediction, 1975 (Europe and West Coast of Africa*, p. 43). The location chosen is a peninsula located in France's Bay of Biscay. It was chosen because it displays an almost perfect example of semi-diurnal tides of the type generally described in textbooks.

It is suggested that this page, or a current page from the reference given above, be reproduced and given to students with the assignmet to discover as many regularities or patterns present in the data as possible. Some time should be allowed for this. Perhaps one could raise general questions with the students to guide them to see these regularities.

Suggested questions include:

- 1) How does the height of high water change each day?
- 2) How does the height of low water change each day?
- 3) Is there a pattern in the change in heights of highs and lows?
- 4) What is the average time interval between any two successive tides (express in hours and minutes)?
- 5) What is the highest tide each month? How many "highest" tides occur each month?
- 6) What is the time interval between any two successive "highest" tides (express in days and fraction of days)?

Finally, after the data has been examined for a fairly extended period of time, the question can be raised concerning the explanation for this phenomena. Inevitably students will indicate that it is "because of the

Table 1

Times of heights of high and low waters Pointe de Grave, France, 1975

	October				November						December						
DAY	TIME	HT.															
1 W	0121 0708 1354 1943	14.3 5.9 15.1 5.2	16 ТН	0242 0833 1503 2055	14.6 5.7 15.3 5.2	1 SA	0247 0840 1510 2106	16.6 3.8 17.2 3.3	16 SU	0321 0913 1538 2133	15.4 5.1 15.7 4.9	1 M	0313 0909 1537 2135	16.7 3.8 17.1 3.6	16 TU	0324 0919 1544 2140	15.4 5.1 15.6 5.1
2 TH	0223 0813 1448 2041	15.3 4.8 16.2 3.9	17 P	0321 0914 1538 2133	15.3 5.1 15.7 4.6	2 SU	0333 0930 1555 2155	17.6 3.1 18.2 2.8	17 M	0355 0952 1610 2209	16.1 4.6 16.2 4.4	2 TU	0400 1001 1622 2225	17.6 3.3 17.6 3.3	17	0402 1001 1620 2221	16.1 4.6 16.1 4.6
3 2	0312 0907 1534 2132	16.4 3.6 17.4 3.0	18 SA	0355 0951 1609 2207	15.9 4.4 16.2 4.3	3 M	0416 1017 1637 2241	18.4 2.8 18.7 2.6	18 TU	0426 1026 1642 2244	16.6 4.1 16.6 4.1	3 W	0444 1049 1706 2311	17.9 3.1 17.6 3.3	18 TH	0438 1041 1657 2300	16.6 4.1 16.4 4.1
SA	0355 0956 1617 2218	17.7 2.8 18.7 2.5	19 SU	0424 1023 1639 2239	16.4 4.1 16.6 3.9	4 TU	0459 1103 1720 2325	18.9 2.6 18.7 2.8	19 ¥	0459 1101 1715 2318	16.9 3.9 16.7 4.1	4 TH	0529 1134 1751 2357	18.0 3.1 17.4 3.4	19 F	0516 1119 1735 2340	17.1 3.8 16.7 3.8
5 SU	0437 1040 1658 2302	18.7 2.5 19.5 2.3	20 M	0454 1054 1708 2309	16.7 3.8 16.9 3.8	5 W	0542 1148 1804	18.7 2.8 18.0	20 Th	0532 1135 1750 2354	17.1 3.8 16.7 4.1	5 P	0613 1218 1834	17.7 3.4 16.9	20 SA	0555 1200 1815	17.4 3.4 16.9
6 M	0519 1124 1740 2346	19.2 2.3 19.5 2.3	21 TU	0523 1125 1738 2341	16.9 3.8 16.9 3.8	6 TH	0010 0627 1233 1849	3.1 18.0 3.3 17.2	21 F	0608 1212 1826	16.9 3.9 16.6	6 SA	0041 0655 1302 1916	3.9 17.2 3.8 16.2	21 SU	0020 0635 1241 1856	3.8 17.4 3.4 16.7
7 TU	0602 1205 1823	19.'0 2.5 18.9	22 W	0554 1156 1809	16.9 3.8 16.7	7 P	0056 0711 1318 1934	3.8 17.1 3.9 16.2	22 SA	0031 0645 1251 1905	4.3 16.7 4.1 16.2	7 SU	0122 0738 1343 2000	4.4 16.6 4.4 15.6	22 M	0103 0717 1323 1939	3.8 17.2 3.6 16.4
8	0029 0645 1252 1907	2.8 18.2 3.0 17.6	23 TH	0012 0625 1229 1842	3.9 16.7 4.1 16.4	8 SA	0139 0758 1402 2022	4.6 16.1 4.9 15.3	23 SU	0112 0726 1233 1949	4.6 16.4 4.6 15.7	8 M	0203 0822 1425 2048	5.1 15.7 5.2 14.9	23 TU	0145 0604 1408 2029	4.1 16.7 3.9 16.1
9 TH	0114 0730 1336 1953	3.4 17.1 3.8 16.2	24 F	0047 0659 1305 1918	4.4 16.4 4.4 15.9	9 SU	0226 0851 1451 2122	5.6 15.3 5.7 14.4	24 M	0154 0814 1418 2042	5.1 15.9 5.1 15.3	9 ТU	0247 0915 1511 2143	5.7 15.1 5.9 14.4	24 ¥	0231 0557 1455 2128	4.4 16.2 4.4 15.6
10 F	0158 0818 1421 2046	4.6 15.9 4.9 15.3	25 SA	0123 0738 1342 2000	4.9 15.7 5.1 15.3	10 M	0319 0955 1549 2232	6.4 14.6 6.6 13.8	25 TU	0244 0914 1512 2148	5.4 15.4 5.4 14.9	10 ₩	0336 1013 1603 2245	6.4 14.4 6.6 13.9	25 TH	0323 0959 1551 2232	4.9 15.7 4.9 15.3
11 SA	0247 0917 1515 2152	5.7 14.9 6.1 14.1	26 SU	0203 0823 1427 2053	5.6 15.3 5.7 14.6	11 TU	0424 1110 1659 2350	7.1 13.9 6.9 13.5	26 W	0343 1024 1617 2304	5.7 15.1 5.7 14.8	11 TH	0432 1119 1704 2353	6.9 14.1 6.9 13.6	26 F	0423 1108 1655 2345	5.4 15.4 5.4 14.9
12 SU	0347 1031 1625 2315	6.7 14.1 6.9 13.5	27 M	0253 0927 1525 2204	6.2 14.6 6.2 14.1	12 W	0536 1230 1812	7.2 13.9 6.9	27 TH	0452 1143 1728	5.9 15.1 5.6	12 F	0537 1227 1810	7.1 13.9 6.9	27 54	0530 1222 1806	5.6 15.1 5.6
13 M	0505 1201 1748	7.2 13.8 7.1	28 TU	0400 1046 1639 2331	6.6 14.4 6.4 14.1	13 TH	0103 0646 1332 1917	13.8 6.9 14.3 6.4	28 F	0021 0604 1256 1839	14.9 5.6 15.4 5.2	13 SA	0059 0642 1329 1912	13.8 6.9 14.1 6.6	28 SU	0058 0642 1331 1917	15.1 5.4 15.3 5.4
14 TU	0045 0630 1321 1907	13.3 7.1 13.9 6.6	29 ¥	0520 1215 1801	6.4 14.6 5.9	14 F	0159 0745 1422 2009	14.3 6.2 14.8 5.9	29 SA	0127 0712 1356 1944	15.4 4.9 15.9 4.6	14 SU	0155 0742 1419 2008	14.3 6.4 14.6 6.1	29 M	0201 0752 1431 2025	15.4 5.1 15.6 4.9
15 ¥	0152 0740 1419 2008	13.9 6.4 14.6 5.9	30 TM	0054 0638 1327 1913	14.6 5.7 15.3 5.1	15 SA	0243 0833 1502 2054	14.9 5.6 15.3 5.4	30 SU	0223 0813 1448 2042	16.1 4.3 16.6 3.9	15 M	0242 0833 1504 2057	14.9 5.7 15.1 5.6	30 TU	0259 0855 1526 2124	15.9 4.6 16.1 4.4
			31 P	0157 0744 1423 2013	15.4 4.8 16.2 4.1										31 W	0351 0951 1614 2216	16.6 3.9 16.4 3.9

TIME MERIDIAN 15" E. 0000 IS MIDNIGHT. 1200 IS NOON. REIGHTS ARE RECKORED FROM THE DATUM OF SOUNDINGS ON THE LARGEST SCALE CHARTS OF THE LOCALITY. moon." However, this glib answer is not enough to explain some of the subtleties observed in the data. Therefore, it is proposed that when the "moon" answer is given, the students be given a table (Table 2) for the same time period and be asked to build a model involving the observed regularities and the phases of the moon.

Table 2.

Phases of Moon October – December, 1975

Date	Phase
Oct. 4	New
Oct. 11	1st Quarter
Oct. 20	Full
Oct 27	3rd Quarter
Nov. 3	New
Nov. 10	1st Quarter
Nov. 18	Full
Nov. 26	3rd Quarter
Dec. 2	New
Dec. 10	1st Quarter
Dec. 18	Full
Dec. 25	3rd Quarter

Hopefully, the students will see the correlation between the occurrence of the full and new moons and the so-called *spring* tides and the occurrence of the *neap* tides near first and third quarter (Fig. 1). A more complete discussion of tides could occur at this time. It would then be instructive to distribute sections of tide tables that show other locations where there are pronounced inequalities between high tides or from locations where the pattern is diurnal rather than semi-diurnal. Such tables illustrate that the simple model put forth in most beginning references is a limited one.

Careful examination of the original data will also reveal an interesting irregularity. Since a full moon rises near sunset, it is on the observer's meridian at midnight. Therefore, according to sketches usually given, one would expect a high tide at midnight during a full moon. (For a similar reason one would expect a high tide at midnight during a new moon as well.) Yet an examination of the data reveals that such is not the case. For example, there was a full moon on October 20th and therefore a spring tide occurred near that time, yet the high tides occurred at 0454 hours and 1708 hours. The explanation for this fact opens up the discussion of the tidal slowing by the earth's rotation.

The earth's tidal bulge points generally in the moon's direction but it is drawn ahead of the earth-moon line because of the earth's rotation (Figure 2). Frictional forces between the water and the surface of the earth (particularly in shallow seas) are set up because the earth rotates once in 24 hours, but the moon revolves (in the same direction) once in a synodic period of 29.5 days. The consequences of these facts are the advance of the highs from the earth-moon line (already mentioned) and the gradual slowing of the earth's rotation. This slowing, though gradual, accumulates such that had a constant running clock started two centuries ago, compared with a clock geared to the rotation of the earth, would have "gained" about 3½ hours during that time. Careful examination of historical eclipse records supports this contention.

Fig. 2. Relationship of high tides to moon due to tidal lag caused by the earth's rotation. $(P_1 = nocturnal high tide; P_2 = diurnal high tide)$

Summary

This exercise investigates the effects of the moon's orbital movement, the earth's and moon's rotational movement, and the spatial relationship of the earth, moon and sun, on the periodicity and magnitude of marine tides. Some of the factors discussed are not normally considered in classroom situations and provide a more complete and accurate understanding of tidal phenomena and the factors influencing them. A more thorough understanding of tides may someday help man harness the tremendous amounts of tidal energy.

References

- 1. Abell, George. 1975. Exploration of the universe (3rd ed.). Holt, Rinehart and Winston pp. 94-104.
- 2. Hicks, S.D. 1965. Ocean Tides. Science Teacher 32 :11-14.
- 3. Runcom, S. K. 1966 Corals as Paleontological Clocks. Scientific American 215(4):26-33.

* * *

UNI Symposium

The University of Northern Iowa will host its fifteenth annual Sience and Mathematics Symposium on November 10-11, 1977. The afternoon of November 10 will be used for scholarship testing. Five to eight fee exemption scholarships (\$2500 each) will be awarded at the close of the Symposium on November 11. There will also be cash scholarships awarded in biology, chemistry, earth science, mathematics and physics.

Friday, November 11 will be a symposium of speakers. Topics include Earthquake Prediction, Atmospheric Matter and we are presently negotiating for a speaker on Recombinant DNA. Communications on the Symposium may be addressed to Science Symposium, Wright Hall 101, University of Northern Iowa, Cedar Falls, Iowa, 50613.

Intelligent Zinc

"Recently, Professor Adon A. Gordus of the University of Michigan has been directing a study of more than 800 well-documented hair samples. Using atomic absorption spectroscopy and neutron activation, his study has uncovered some interesting correlations between academic performance and trace metal content of hair. Those students with the highest gradepoint averages frequently tend to have higher than normal zinc and copper content in their hair, but lower than normal iodine content. The reverse is generally true of students at the lower end of the gradepoint spectrum"

From an article, "Hair... The Body's Trace Metal Diary" in Varian Instrument Applications 8:12, (1974).