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Engel Conditions on Groups1 

DONALD H. PILGRIM2 

Abstract. Let g,c denote positive integers. A group is said 
to have type ( g~ c) if every subgroup which can be generat
ed by g elements is nilpotent of class at most c. A result of 
R. H. Bruck shows that groups of type ( 4~5) without ele
ments of order 2 are nilpotent of class at most 7. In the 
present paper the following result is reported: If G is a (4~ 
5) group on 5 generators without elements of order 2, then G 
is nilpotent of class at most 6. 

Recent work by Kostrikin, [ 4], on the Burnside problem 
motivates the following definition: Let g,c denote positive in
tegers. A group has type ( g~c) if every subgroup which can 
be generated by g elements is nilpotent of class at most c. R. H. 
Bruck has studied groups of type ( 4~5) in connection with the 
Burnside problem. A result of Bruck shows that groups of type 
( 4~5) without elements of order 2 are nilpotent of class at 
most 7. It has been conjectured that this upper bound on the 
nilpotency cl.ass is not best possible in the case of groups on 5 
generators. The main result of this paper is the following: 
Theorem. If G is a ( 4~5) group on 5 generators without ele
ments of order 2, then G is nilpotent of class at most 6. 

DEFINITIONS AND NOTATION 

Let G be a group and let ( a,b) = a-1b-1ab for a,b r:G. Let 

(a,b;O) =a; (a,b;n) = ((a,b;n-1),b). 

If H, K are subgroups of G, let (H,K) be the subgroup gen
erated by all commutators (h,k), where hi::H and ki::K. The 
lower central series of G is a chain i Gn r of subgroups defined by 

G1 = G; Gn+l = (Gn,G). 

If there exists a non-negative integer n such that Gn+ 1 = 1, and 
if c is the least such n, then G is nilpotent of (exact) class c. 
The center of G is a subgroup Z defined by: 

z = ia i::G: (a,x) = 1 \Ix i::Gr. 

PRELIMINARY LEMMAS AND THE MAIN THEOREM 

Let G be a group generated by u,v,x,y,z. Order the generators 
by 

u<v<x<y<z 

1 This work was done while the author was' a student at the University of Wisconsin 
under NSF Fellowship No. 62016. 

2Department of Mathematics, Luther College, Decorah, Iowa. 
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and form basic commutators as on page 166 of [2], so that the 
following holds: 

k ei 
fe Gn::::'>f==TI Ct mod Gn+i. for n > 1, 

c=l 
where the e; are basic commutators in G0 and the ei are integers. 
Let B denote the set of all basic commutators of length 7. For 
all integers m,n,p,q,r that pertain, let Tm,n,p,q,r denote the 
subset of B consisting of all basic commutators of length 7 in 
which one generator occurs m times, another generator occurs 
n times, another p times, another q times, and the remaining 
generator occurs r times. 

Lemma 1. If G is a ( 4-75) group on 5 generators without 
elements of order 2, then T 3 ,1,1,1,1 = 1. 

Proof. Since G is a ( 4-75) group we have in particular that 

(a,b;5) = 1 V a,beG. 

Then, since G has no elements of order 2, it follows that G/Z 
has no elements of order 2. Also, since G has type ( 4-75), it 
follows immediately that G/Z has type (3-74). Now Bruck, [1] 
p. 5.4 has proved that groups of type (g-72g-2) without ele
ments of order 2 are nilpotent of class at most 3g-3. \Vith g = 3, 
we conclude that G/Z is nilpotent of class at most 6, whence G is 
nilpotent of class at most 7. Thus commutators of length 8 reduce 
to the identity, and also, commutators of length 7 commute. 

Next, we note that 
( 1.1) ( v,u,u;x,u;z,y) = 1, 

where ( v,u,u;x,u;z,y) is the complex commutator 

( ( (v,u,u),(x,u) ),(z,y)) . 

For let K be the subgroup generated by the four elements u,v,x, 
( z,y). Then ( v,u,u) eK3 , ( x,u) eK2, and ( z,y) eK1 in the lower 
central series of K. Therefore we have 

( v,u,u;x,u;z,y) e ( K3,K2,K1) C Ka+~+ 1 = K6 = 1. 

We observe that ( 1.1) holds for any permutation of the argu
ments v,x,z,y 

Taking K to be the subgroup generated by the four elements 
u,y,z, ( v,x) we get the identity ( v,x,u;y,u;z,u) = 1. In terms of 
basic commutators this is 

( 1.2) ( v,u,x;y,u;z,u) ( x,u,v;y,u;z,u )-1 = 1. 

On the other hand, (vx,u,vx;y,u;z,u) = 1 by ( 4-75), whence 

(1.3) (v,u,x;y,u;z,u) (x,u,v;y,u;z,u) = 1. 

2
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The factors in ( 1.2) and ( 1.3) commute, and hence we con:::lude 
that 

(v,u,x;y,u;z,u) 2 = 1. 
Since G has no elements of order 2, we conclude that 
( 1.4) ( v,u,x;y,u;z,u) = 1. 

In exactly similar ways, we find that 

( 1.5) ( z,y;x,u;v,u,u) = 1, 
( 1.6) ( z,u;y,u;v,u,x) = 1. 

Now permuting v,x,y,z, in (1.1), (1.4), (1.5), (1.6) we find 
that all 3-2-2 complex commutators in Ta,1 , 1 , 1 , 1 in which u occurs 
3 times must be 1. By successively interchanging u with v,x,y,z 
mid changing to basic form, we find that all 3-2-2 commutators 
in TR,1,1,1,1 reduce to the identity. 

If we let K be the subgroup generated by the four elements 
u,v,x, ( z,y) and then use ( 4~5), we find that 
( 1.7) ( v,u,u,x;z,y) = 1. 
By ( 4~5) we have 

1 = ( v,u,u,xy,xy;z,u) = ( v,u,u,x,y;z,u) ( v,u,u,y,x;z,u) 
( v,u,u,x,y;y,u ) 2 ( v,u,u;y,x;z,u) = ( v,u,u,x,y;z,u) 2 , 

whence 
( 1.8) ( v,u,u,x,y;z,u) = 1. 

Permuting u,v,x,y,z in ( 1.7) and ( 1.8) we find that all 5-2 com
plex commutators in T 8 , 1,i,i, 1 reduce to 1. 

By ( 4~5) we have 

( 1.9) ( v,u,u,u;y,x,z) = 1. 
Similarly we have ( v,u,ux;y,z,u) = 1, which in basic form is 
(1.10) (v,u,u,x;y,u,z)(v,u,u,x;z,u,y)-1 = 1. 
Also, by ( 4~5) we have (v,u,u,x;yz,u,yz) = 1, whence 
( 1.11) ( v,u,u,x;y,u,z) ( v,u,u,x;z,u,y) = 1. 
From ( 1.10), ( 1.11), and the fact that G has no elements of order 
2, we conclude that 

( 2.12) ( v,u,u,x;y,u,z) = 1. 
Again by ( 4 ~ 5) we have 

1 ( v,u,xy,xy;z,u,u) = ( v,u,x,y;z,u,u) ( v,u,y,x;u,u) 
( v,u,x,y;z,u,u) 2 ( v,u;y,x;z,u,u) 
( v,u,x,y;z,u,u) 2 , 

whence 
( 1.13) ( v,u,x,y;z,u,u) = 1. 
Permuting u,v,x,y,z in (1.9),(1.12),(1.13) we see that all 4-3 
complex commutators in T 8 , 1 ,i, 1 ' 1 reduce to 1. 

At this point we have shown that all non-simple complex com-
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mutators in TH, 1,i,i,1 reduce to the identity. The only simple 
commutators in this set which are trivially 1 by ( 4~5) are 
those which are dealt with below. 

Now (z,u,v,y,y,y,x) = 1 by ( 4~ ), which in basic form is 
( 1.14) ( z,u,v,x,y,y,y) = 1. 
We observe that (1.14) holds for any permutation of its argu
ments. This leaves only ( z,u,v,x,y,z,z) left to consider. By 
( 4~5) we have ( z,u,v,x,z,z,y) = 1, which in basic form yields 

( z,u,v,x,y,z,z) = 1. 
This completes the proof of Lemma 1. 

Lemma 2. If G is a ( 4~5) group on 5 generators without 
elements of ord~r 2, then T 2,2,1,1,1 = 1. 

Proof. Taking K to be the subgroup generated by the four 
elements u,v,x, ( z,y) and using ( 4~5) we find that 
( 2.1) ( v,u,u;x,v;z,y) = 1. 

Similarly, we have 
( 2.2) ( v,u,x;v,u;z,y) = 1, 
( 2.3) ( x,u,v;v,u;z,y) = 1. 

By ( 4~5) we have 
( 2.4) ( y,x,u;v,u;z,v) = 1, 
from which we get 
( 2.5) ( y,u,x;v,u;z,v) ( x'u,y;v,u;z,v )-1 = 1. 
Also by ( 4~5) we have ( xy,u,xy;v,u;z,v) = 1, whence 
( 2.6) ( y,u,x;v,u;z,v) ( x,u,y;v,u;z,v) = 1. 
From (2.5), (2.6) we conclude that 
( 2. 7) ( y,u,x;v,u;z,v) = 1. 
Interchanging u and v in ( 2.7) we get 

1 = (x,v,y;u,v;z,u)=(x,v,y;v,u;z,u)-1 . 

whence 

( 2.8) ( x,v,y;v,u;z,u) = 1. 
From ( 4~5) we have 

( 2.9) ( y,x,z;v,u;v,u) = 1. 
Also from ( 4~5) we have ( vy,u,x;vy,u;z,vy) = 1. Since G has 
no elements of order 2 we may use the linearization process of 
Heineken, [3], page 699, to obtain 

( y,u,x;v,u;z,v) ( v,u,x;y,u;z,v) ( v,u,x;v,u;z,y) = 1. 
In view of ( 2.2) and ( 2.7) we conclude that 
(2.10) (v,u,x;y,u;z,v) = 1. 
Again from ( 4~5) 

1 ( x,u,vy;vy,u;z,vy) 
= ( x,u,y;v,u;z,v) ( x,u,v;y,u;z,v) ( x,u,v;v,u;z,y). 

4
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It follows from (2.6), (2.7), (2.3) that 
( 2.11) ( x,u,v;y,u;z,v) = l. 

From Lemma 1 we have 
1 ( x,uv,uv;y,uv;z,v) 

= ( x,v,u;y,u;z,v) ( x,u,v;y,u;z,v) ( x,u,u;y,v;z,v) 
= ( x,u,v;y,u;z,v )2 ( v,u,x;y,u;z,v )-1 ( x,u,u;y,v;z,v). 

Then, by ( 2.10) and ( 2.11), we conclude that 
( 2.12) ( x,u,u;y,v;z,v) = l. 

381 

Permuting arguments in (2.1)-(2.12) we find that all 3-2·2 
complex commutators in T 2 ' 2 , 1 , 1 , 1 in which the segment of length 
3 comes first reduce to l. Exactly similar arguments show that 
all the 3-2-2 complex commutators in which the segment of length 
3 occurs last reduce to l. Thus all the 3-2-2 complex commutators 
in T 2,2,1,i,1 reduce to l. 

From ( 4~5) we get 
( 2.13) ( v,u,u,v,x;z,y) = 1, 
(2.14) (x,u,u,v,v;z,y) = l. 
Also from ( 4~5) we have 

1 ( v,u,u,xy,xy;z,v) 
( v,u,u,x,y;z,v) ( v,u,u,y,x;z,v) 
( v,u,u,x,y;z,v )2 ( v,u,u;y,x;z,v) 
( v,u,u,x,y;z,v )2 , 

from which we conclude that 
( 2.15) ( v,u,u,x,y;z,v) = l. 

From ( 4~5) we have 

whence 
( 2.16) 

1 ( x,u,u,vy,vy;z,vy) 
( x,u,u,y,v;z,v) ( x,u,u,v,y;z,v) ( x,u,u,v,v;z,y) 
(x,u,u,v,y;z,v) 2 (x,u,u;y,v;z,v) by (2.14) 
( x,u,u,v,y;z,v )2 

( x,u,u,v,y;z,v) = l. 

Interchanging u oand v in ( 2.15) we get 
1 = (u,v,v,x,y;z,u) = (v,u,v,x,y;z,u)-1 , 

from which it follows that 
( 2.17) ( v,u,v,x,y;z,u) = l. 

From Lemma 1 we have 
1 ( x,uv,uv,uv,y;z,u) 

= ( x,u,v,v,y;z,u) ( x,v,u,v,y;z,u) ( x,v,v,u,y;z,u) 
= ( x,u,v,v,y;z,u) 2 ( v,u,x,v,y;z,u )-1 by interchanging 

u and v in ( 2.16) In view of ( 2.17) we conclude that 
( 2.18) ( x,u,v,v,y;z,u) = l. 

5
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From ( 4-+5) we have 
1 ( x,u,vy,vy,z;vy,u) 

( x,u,y,v,z;v,u) ( x,u,v,y,z;v,u) ( x,u,v,v,z;y,u) 
(x,u,v,y,z;v,u) 2 by interchanging and y and z in 
(2.18 ). 

Therefore we have 
(2.19) (x,u,v,y,z;v,u) = 1. 

Also by ( 4-+5) we have 
1 = ( vx,u,vx,y,z;vx,u) 

= ( x,u,v,y,z;v,u) ( v,u,x,y,z;v,u) ( v,u,v,y,z;x,u). 

By applying the permutation (~ ~ ; i ~) to (2.17) and using 
( 2.19) we arrive at 
( 2.20) ( v,u,x,y,z;v,u) = 1. 

Now by permuting the arguments in (2.13)-(2.20) we find that 
all the 5-2 complex commutators in T 2 , 2 ,i,i,1 reduce to 1. 

From ( 4-+5) we get 
( 2.21) ( v,u,u,v;y,x,z) = 1. 
Also from ( 4-+5) we have ( v,u,u,x;y,z,v) = 1, whence 
(2.22) (v,u,u,x;y,v,z)(v,u,u,x;z,v,y)-1 = 1. 
On the other hand ( v,u,u,x;yz,v,yz) = 1, so that 
( 2.23) ( v,u,u,x;y,v,z) ( v,u,u,x;z,v,y) = 1. 
From ( 2.22) and ( 2.23) and the fact that G has no elements of 
order 2, we conclude that 
(2.24) (v,u,u,x;y,v,z) = 1. 
In a similar way we get 
( 2.25) ( x,u,u,v;y,v,z) = 1. 

Interchanging u and v in ( 2.24) we get 
1 = ( u,v,v,x;y,u,z) = ( v,u,v,x;y,u,z )-1, whence 

( 2.26) ( v,u,v,x;y,u,z) = 1. 
Interchanging u and v in ( 2.25) we get 

1 ( x,v,v,u;y,u,z) = ( x,v,u,v;y,u,z) 
= ( x,u,v,v;y,u,z) ( v,u,x,v;y,u,z )-1 

= ( x,u,v,v;y,u,z) ( v,u,v,x;y,u,z )-1 , 

which in view of ( 2.26) me:.ms that 
( 2.27) ( x,u,v,v;y,u,z) = 1. 

By ( 4-+5) we have 
1 ( x,u,u,vy;z,vy ,vy) 

= ( x,u,u,y;z,v,v) ( x,u,u,v;z,y,v) ( x,u,u,v;z,v,y) 
= ( x,u,u,y;z,v,v) ( x,u,u,v;z,y,v) by interchanging y 

and z in ( 2.25). We conclude that 
( 2.28) ( x,u,u,y;z,v,v) = 1. 

6
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Permuting the arguments in ( 2.21) and ( 2.24 )-( 2.28) we find 
that all the 4-3 complex commutators in T 2, 2 ,i,1 , 1 reduce to 1. 

Finally, since all the non-simple complex commutators in 
T 2, 2 , 1, 1, 1 reduce to the identity, it follows that all the simple 
commutators therein also reduce to the identity. This completes 
the proof of Lemma 2. 

Now by Lemmas 1 and 2 the fact that G has type ( 4~5) 
we see that all the basic commutators of length 7 in G reduce to 
1. It follows that all commutators of length 7 in G reduce to 1, 
and thus we have the main theorem of this paper. 

Theorem. If G is a ( 4~5) group on 5 generators without 
elements of order 2, then G is nilpotent of class at most 6. 
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