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ABSTRACT  

The Conservation Reserve Program (CRP) aims to provide ecosystem services in 

landscapes dominated by agriculture by converting previous agricultural fields into 

reconstructed prairies and wetlands. The main priorities of the program include reducing 

soil erosion and improving water quality, but the perennial vegetation in the fields can 

also provide other benefits such as increased carbon sequestration and biodiversity. These 

additional benefits of the program are not closely monitored, though these benefits are 

potentially equally valuable to the targeted program benefits. This study compared soil 

carbon in CRP fields and a subset of corn fields in order to determine the impact of 

reconstructed prairies on carbon sequestration in the landscape. Results showed that CRP 

fields decrease soil bulk density and increase carbon sequestration over time when 

compared to corn fields. This study also looked at the susceptibility of CRP fields to 

invasion by the weedy invasive species reed canary grass (Phalaris arundincea) and wild 

parsnip (Pastinaca sativa). CRP fields increase the biodiversity in the landscape, which 

can be beneficial to natives, but also to weedy species. Results show that increased grass 

species richness and grass percent cover decreased the chances of reed canary grass 

presence in a CRP field. Likewise, increased forb species richness and forb percent cover 

decreased the chances of Pastinaca being present in a field. This result suggests that 

increased biodiversity helps decrease the chances of weedy invasion in these CRP fields. 

Overall, conclusions show that CRP fields have the potential to bring ecosystem services 

to agricultural landscapes that are not targeted by the program. 
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CHAPTER ONE 

INTRODUCTION 

The Conservation Reserve Program (CRP) was created in 1985 by the United 

States Department of Agriculture (USDA) as a way of mitigating the negative effects of 

agricultural production and improving environmental health. In exchange for a yearly-

payment, farmers agree to take marginal or environmentally sensitive agricultural lands 

out of agricultural production and to plant them with beneficial plant species according to 

the guidelines of the conservation program they enroll in.   

These contracts typically last between 10-15 years and have potential to be 

renewed. By planting and establishing long-term  vegetation cover on environmentally 

sensitive or low producing crop land, the CRP program aims to bring a variety of 

beneficial ecosystem services to the agricultural landscape. Ecosystem services that are 

targeted by the program include, conserving soil, improving air and water quality and 

creating wildlife habitat. 

The CRP program authorizes  several different  “conservation practices”. The 

following conservation practices were assessed as a part of this research: CP-1, CP-2, 

CP-10, CP-4D, CP-23, CP-25, CP-33, CP-37 CP-38 and CP-42. Each conservation 

practice emphasizes a different ecosystem service or environmental benefit and 

consequently has different requirements and conditions as part of their enrollment in the 

CRP program (FSA 2017). 

The CP-1 practice is the establishment of permanent introduced grasses and 

legumes. The goals of this program are to reduce soil erosion, increase water quality, and 
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to create or improve wildlife habitat. Requirements of  this program include that noxious 

weeds be controlled and that if the field is grazed or hayed during the contract, it must 

only be 1 out of every 3 years. 

The CP-2 practice is the establishment of permanent native grasses. The goals of 

this program include to establish or maintain new existing cover to create habitat for 

wildlife as well as to prevent soil loss and maintain water quality. Requirements of being 

in this program include no grazing or haying through the life of the contract and that 

noxious weeds to be controlled. 

The CP-10 practice is the maintenance of already established grasses or forbs and 

shrubs. The main priorities of this program are to create or maintain wildlife habitat as 

well as provide protection against soil erosion and increase water quality. Maintenance of 

this conservation program is only allowed if it is to increase the diversity or health of the 

field.  Maintenance against noxious weeds is also required. 

The CP-4D practice is the establishment of permanent wildlife habitat. The 

purpose of this conservation program is to provide shelter and food for wildlife, including 

upland and grassland birds.  

The CP-23 practice is wetland restoration on floodplains. In order to be enrolled 

in this program the site must have at least 51% hydric soils that are located within the 

100-year floodplain. In many cases, succession is allowed to occur in these fields, with 

vegetation reestablishing naturally. If it is concluded that diverse and native vegetation 

will not naturally reestablish within 3 years’ time, the field will be seeded with beneficial 

species. The purpose of this conservation program is to provide habitat for waterfowl, 
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grassland birds and other wetland species as well as filter sediment and nutrient runoff 

and to reduce downstream damages caused by flooding.  

The CP-25 practice, restoration of rare and declining habitat, aims to restore the 

ecological function of endangered habitats, to provide habitat for wildlife and pollinators, 

and to reduce soil erosion. It requires that noxious weeds be controlled in the site. 

The CP-33 practice  is buffer habitat for upland birds. The goals of this program 

are to provide nesting habitat, cover and escape cover for upland birds around field edges. 

This practice is designed to be adjacent to crop fields and does not need to be a whole 

field itself. Vegetation can be seeded, or natural succession can be allowed to occur on 

the field margins. These habitat strips may not be mowed, grazed or hayed for the 

duration of the contract, nor can a food plot be established within it. It also may not be 

used for any agricultural purposes, such as turn arounds, lanes or storage.  

The CP-37 practice is for duck nesting habitat. To be in this program the land 

must be a wetland outside of the 100-yr flood plain in one of the limited counties in MN, 

IA, ND, SD, MT in which it is available. A grassland buffer must be maintained around 

the wetland and no grazing is allowed. 

The CP-38 practice is part of a special program within the CRP program, State 

Acres for Wildlife Enhancement (SAFE). This program aims to create vital habitat for 

high-priority wildlife species, such as those that are threatened or endangered as well as 

those that are considered to create economic benefits or that are highly valued. 

The CP-42 practice aims to establish diverse pollinator habitat. The goals of this 

program are to create wildlife habitat, specifically focused on pollinators, protect soil 
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productivity and to improve water quality. This program requires that there are at least 

nine pollinator friendly forbs established on the site and that noxious weeds are to be 

controlled. CP-42 sites must be at least 0.5 acres (0.2 ha). 

These conservation practices represent most of the practices implemented through 

the CRP program. Many of these practices can bring with them other non-targeted 

benefits, some of which will be explored in this thesis. While millions of acres of 

agricultural land are enrolled in the CRP program each year, ecosystem services that are 

not directly targeted by the program are not widely monitored. The objective of this 

thesis is to determine if the CRP program is providing these valuable ecosystem services 

to the agricultural landscapes by exploring the benefits of carbon sequestration and 

increased biodiversity in CRP fields. 
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CHAPTER TWO 

CARBON SEQUESTRATION IN CRP FIELDS 

Introduction 

Carbon dioxide has come to the center of international efforts to decrease the 

input and mitigate the effects of  greenhouse gases accumulating in Earth’s atmosphere as 

a result of human activity. A large reason for this is that carbon dioxide comprises around 

60% of the total greenhouse gas emissions due to anthropogenic activities and it has a 

long atmospheric residence time, of over 100 years. It is therefore the most important 

contributor to anthropogenic climate change (Srivastava et al. 2012; Rastogi et al. 2002).   

Many different drivers contribute to the increase of carbon dioxide in the 

atmosphere; the burning of fossil fuels and land use change are two of the main 

anthropogenic drivers. It is estimated that between  1750 and 2011, land use change has 

contributed  over one-third of the carbon dioxide emissions to the environment (IPPC 

2014). Land use change refers to the alteration of natural land cover (vegetation such as 

prairie or forest), for other uses such as agriculture. One area of the United States where 

extensive land use change has occurred is the tallgrass prairie region. This region consists 

of Midwestern states, including regions of ND, SD, NE, MN, IL, OH and IA, that have 

been extensively converted for agricultural purposes. In Iowa alone land use change has 

resulted in the loss of over 99.9% of the native tallgrass prairies (Samson and Knopf 

1994).  

Terrestrial systems hold about 50% more carbon than the carbon dioxide that 

resides in the atmosphere and over 75% of the carbon in terrestrial systems are held in 



6 

soils, compared to 25% in the biomass of living organisms (McCarl et al. 2007; Fornara 

and Tilman 2008; Lal 2004). Some studies suggest various soils in the United States have 

lost 30-50% of the carbon that they held before large scale land conversion occurred for 

agricultural use (Baker et al. 2007; Haddaway et al. 2016; Kucharik et al. 2001). 

Carbon is stored in soils through the process of carbon sequestration. Carbon 

sequestration is the process of vegetation taking carbon dioxide from the atmosphere 

during photosynthesis and fixating it into plant biomass. A portion of the carbon dioxide 

absorbed by plants during photosynthesis is stored underground in soils in the form of 

soil organic carbon. Soil organic carbon (SOC) is a component of soil organic matter 

(SOM), a mixture of organic compounds that are high in carbon content. Much of this 

SOM comes from dead litter that is deposited as dead plant material. This plant material 

is rich in organic carbon as it was used by plants to build up the plant’s total biomass. 

Most of this dead litter that is deposited by plants is decomposed in the oxygen rich 

environment aboveground by microbes before the carbon can be deposited as SOC (Kell 

2012). 

Root biomass is a large contributor to SOC (Fornara and Tilman 2008; Farrar et 

al. 2003). This takes place in one of two ways; carbon is used to build root biomass and 

the carbon that is not used by the plant to build biomass is exuded through the plant’s 

roots as mucilage and sloughed-off cells known as rhizodeposits. The root biomass of 

plants can be extensive, around 30-50% of carbon fixed during photosynthesis is used to 

build root biomass (Baker et al. 2007; Buyanovsky and Wagner 1997). While some 

deposited soil carbon is respired back into the atmosphere through microbial respiration, 
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the rest is stored in the soil in the form of organic matter, such as humus. Soils are good 

at storing this SOC because they restrict oxygen availability; as a result, carbon that has 

been deposited by plant roots and dead litter tends to stay in the soil. However, recent 

evidence shows that a large amount of soil carbon has been lost from agricultural and 

natural landscapes due to accelerated soil respiration, leaching, and erosion (De Deyn et 

al. 2010; Lal 2004; Bellamy et al. 2005) all of which are increased in agricultural 

landscapes as plowing practices aerate the soil, eliminating anoxic conditions that slow 

down the decomposition of SOC. 

While root biomass is an important regulator of  carbon sequestration in soils, the 

properties of the soil itself have important implications for  the ability of the soil to 

sequester carbon. One of these properties is bulk density. Bulk density indicates the level 

of compaction that a soil has experienced by measuring the mass per unit volume of the 

soil. Bulk density can influence how well root systems are able to infiltrate and grow in 

the soil and can influence the availability of resources such as water and nutrients to 

plants.  

Consideration of bulk density is important when measuring or estimating carbon 

sequestration, as the amount of actual soil vs pore spaces in the soil has implications for 

how much carbon is being sequestered per unit volume. Kucharik et al. (2003) found that 

soil bulk density was 13% lower in tested CRP fields than in crop soils adjacent to the 

CRP fields. This is likely due at least in part to reduced compaction from heavy 

machinery and increased root penetration in soil. 
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If the input of carbon into soils exceeds the carbon lost to the atmosphere, SOC 

will increase over time and soil will act as a carbon “sink”, pulling CO2 out of the 

atmosphere and sequestering it in soil, which has the potential to serve as long-term 

storage. Carbon is mostly sequestered into the soil from the exudates of plant root 

rhizomes, while soil aeration, such as tillage, leads to lost soil carbon due to resulting 

aerobic conditions that lead to accelerated SOM decomposition. As discussed earlier, 

nearly two times the amount of carbon that is stored in the atmosphere is stored in 

terrestrial soils, so even a small change in the input or output of carbon in soils can show 

a significant change in atmospheric carbon dioxide. Agricultural systems overall are a 

source of anthropogenic carbon dioxide, contributing up to 20% of total global emissions 

of CO2 (Rahmat et al. 2012; Haile-Mariam et al. 2008). 

The soil carbon pool that once existed under the tallgrass prairie ecosystem in the 

midwestern US is estimated to have decreased by 40% of its original size, due to land 

conversion for agriculture purposes. (Bernacchi et al. 2005; Donigian et al. 1994; Lal 

2004). This is because agricultural practices have been further expanded in the tallgrass 

prairie region since their first cultivation. Advancements in farming technology such as 

genetically modified crops have contributed to increased farm sizes and intensified 

agricultural management (USDA NRCS 2006). Increased agricultural management can 

be seen in many Midwest states, such as Iowa, whose land cover is eighty-six percent 

devoted to row crop production. (USDA NRCS 2006).  

The Conservation Reserve Program can mitigate many negative consequences of 

agricultural practices, including loss of soil carbon. Since the enactment of the Farm Bill 
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of 1985, the United States Department of Agriculture (USDA) has overseen the 

conversion of millions of acres of agricultural land to grassland and wetland under the 

CRP program (Kucharik et al. 2003; Metting et al. 2001). Grasslands hold more than 

10% of the terrestrial biomass carbon and between 10-30% of the total pool of global 

SOC (Schlesinger 1992; Scurlock and Hall 1998; Derner and Schuman 2007), giving 

them good potential to serve as a substantial global carbon sink. 

While some carbon sequestration does occur on agricultural fields, the process is 

often slow and can take up to 100 or more years to return to soil carbon levels prior to 

land use change to agricultural production (Yang et al. 2019). The root biomass of 

common agricultural crops in the Midwest such as corn and soybeans do not have 

extensive root systems. Ordonez et al. (2018) found that in Iowa corn maximum root 

depth ranges from 2.9  to 5.2 ft and soybean ranges from 2.9 to 5.1 ft, although root depth 

declines with increasing soil fertility (Wilson and Tilman 1993). While soil conservation 

practices such as no-till agriculture conserve more carbon, Rastogi et al. (2002) found 

that no-till agricultural practices still lost 2.6 kg of carbon dioxide a day per hectare 

compared to 11 kg in intensive tilling practices. Thus, while no-till reduces the source 

strength, no-till fields remain a net carbon source and are not a carbon sink. Perennial 

vegetation, such as tallgrass prairies that once dominated the Midwest landscape have 

much more extensive root systems ranging anywhere from 2-15 feet in length. This gives 

them the potential to sequester more carbon than agricultural fields and potentially act as 

a carbon sink. The Conservation Reserve Program has many conservation practices that 
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establish tallgrass prairie vegetation on agricultural land and would likely provide 

increased soil carbon storage as an additional benefit to the practice. 

The second chapter of this thesis examined how multiple factors affect carbon 

sequestration in Iowa CRP Fields. Total soil carbon was analyzed including differences 

between the following factors: paired CRP-corn fields, time, conservation practice, 

carbon concentration and bulk density. Local climatic conditions and soil composition 

can have a significant effect on carbon sequestration (Poirier et al. 2009), therefore it is 

important to study the effect of CRP fields on carbon sequestration in various regions. 

This study will increase knowledge of how CRP conservation practices affect carbon 

sequestration in Iowa. I hypothesized that CRP fields would show an increase in carbon 

sequestration when compared with baseline carbon levels and when compared with 

paired agricultural fields.  

The specific questions being asked in this research are: 

1. Do CRP fields have higher total soil carbon when compared to 

adjacent corn fields? 

2. Does total soil carbon increase in CRP fields over time? 

3. Does total soil carbon differ between different CRP practices?  
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Methods 

Study Area 

All soil samples were taken from 34 CRP fields and 5 corn fields in Iowa in the 

summer of 2018 (Table 1). Fields were in 11 different counties including: Carrol, 

Guthrie, Grundy, Bremer, Butler, Mitchell, Story, Buchanan, Linn, Sac and Benton 

counties.  There was little variation in temperature and precipitation among these sites. 

Across all 11 counties,   average annual high temperature was 28.7 ° C, average annual 

low temperature was - 10.7° C and annual average precipitation was 90.4 centimeters.  

 

Table 1: All CRP fields sampled; with conservation practice and number of years since 

CRP field establishment. 

Field ID CP Type Years in CRP 

IA.02.06 02 8 Years 

IA.4D.07 4D 8 Years 

IA.4D.17 4D 8 Years 

IA.10.27 10 9 Years 

IA.23.02 23 9 Years 

IA.23.19 23 8 Years 

IA.25.19 25 7 Years 

IA.25.28 25 7 Years 

IA.38.05 38 8 Years 

(table continues) 
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Field ID CP Type Years in CRP 

IA.38.16 38 6 Years 

IA.38.17 38 9 Years 

IA.38.23 38 8 Years 

IA.38.29 38 9 Years 

IA.42.03 42 6 Years 

IA.42.05 42 6 Years 

Moseley CRP 42 3 Years 

Miller CRP 42 3 Years 

Brindle CRP 1 42 3 Years 

Brindle CRP 2 42 3 Years 

Stone CRP 42 15 Years 

 

Soil Sampling 

Soil samples were taken from fourteen different CRP fields enrolled in various 

conservation practices, including CP-2, CP-10, CP-4D, CP-23, CP-25, CP-38 and CP-42.  

The CRP fields used in this analysis are a subset of 180 Iowa fields surveyed for a larger 

USGS project. Requirements for selecting these fields were that they were visible from a 

public road and therefore, could be visually assessed without entering private property. 

The collected soil samples were taken from CRP and crop field locations where 

landowners gave permission to collect soil samples.   
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Along with soil samples from CRP fields, soil samples were taken from five corn 

fields directly adjacent to five CRP fields in order to ensure as little difference in climate 

and soil type as possible; these fields are considered paired fields. 

In each of the eighteen fields, four transects were laid down, in order to get a 

representative sample across the range of soil conditions with in the field 100 m or 25 m 

transects were laid down in a pattern (Figures:1,2,3) that best covered the entirety of the 

field. The patterns were chosen based on the size and shape of each field, 25 m transects 

(Figure 3) were used for smaller fields, mainly CP-42 fields as they are generally smaller 

than others due to program requirements. Sampling started 15 meters from the roadside to 

minimize edge effects. In each transect, soil samples were taken from two 1 m² quadrats 

that were 25 m apart from each other for a total of eight soil samples per field. 

Soil samples were taken using a 4.8 cm diameter bulk density corer and the soil 

sample was taken from the top 15 cm of the soil. Before soil samples were taken, any 

litter present in the soil sample area was removed to ensure only mineral soil was 

included in the sample. 
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Figure 1: 100 m sampling design 

for field with unequal field 

margins (Yellow circles indicate 

quadrat positions). 
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Figure 2: 100 m sampling design for uniform field with 

equal margins (Yellow circles indicate quadrat 

positions). 

Figure 3: 60 m sampling design for 

smaller, irregular fields (Yellow 

circles indicate quadrat positions). 
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Soil Analysis 

Soil samples were frozen immediately upon return from the field, always less than 

12 hours from the time soil samples were taken. Samples were stored in the freezer to 

avoid loss of labile organic carbon, the portion of SOC that is readily broken down by 

microorganisms. 

When soil samples were ready to be analyzed, they were thawed and weighed 

wet. A subsample was collected and weighed, then oven-dried at 105 ° C to constant 

mass to determine soil moisture of the bulk density core. This soil moisture was used to 

determine the dry soil mass of the bulk density core, allowing bulk density to be 

determined by dividing dry weight of each sample by the volume of the bulk density 

core. Each bulk density measurement from individual cores were averaged together with 

other samples from the same field, in order to reach an average bulk density for the entire 

field.  

Organic carbon content was determined using the loss on ignition method (Ball 

1964; Konen et al. 2002), a technique that measures organic carbon by combusting it out 

of the sample. A subset of between 5-10 g (dry soil mass) of the soil sample was weighed 

in a ceramic crucible prior to being put into an oven at 500 ° C for 200 min. The soil 

sample was then allowed to cool overnight before being weighed again. The soil weight 

obtained after organic carbon was burned off was subtracted from the dry soil weight in 

order to determine the total labile organic carbon in the soil sample. 
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Due to the difficulty of obtaining bulk density measurements, bulk density cores 

were not collected for 29 samples, so for these samples bulk density was instead 

estimated using the strong relationship observed in the data between Loss on Ignition 

measurements (LOI) and bulk density (BD) (r = -0.827): 

BD = 1.832 - 0.0704 * LOI 

Similar approaches have previously been used to infer missing bulk density 

measurements (Adams 1973; Luo et al. 2010). 

Data Analysis 

Because soils vary tremendously in inherent composition and carbon 

concentration, I compared the soil carbon concentration (%C) measured in each sample 

to the mean soil %C for each soil type. This was done by subtracting from the measured 

%C the mean soil %C for a given soil type, as reported through the USDA NRCS 

National Cooperative Soil Survey (USDA NRCS 2019).   

This difference in soil carbon is expected to be equal to zero when no net gain or 

loss of soil carbon has occurred, while positive values indicate increased soil %C in the 

sample. To determine if the differences were significantly different from zero, they were 

analyzed in R version 3.5.2. (R Core Team 2019) using a linear mixed effects model, 

with “site” included as a random term in the model to account for non-independence of 

replicate cores from each farm. In addition, the effect of the grassland’s age was tested to 

determine if soil %C increased or decreased linearly over time. 
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In the subset of CRP with adjacent corn fields (paired fields), soil bulk density, 

carbon concentration, and total carbon content per unit area were compared between the 

paired fields.  For these data, analysis was conducted as a split-plot design using a mixed 

effects model with the farm as a random term and habitat type as a fixed effect. 

LOI % for CRP prairie fields that did not have a paired corn field were 

determined by obtaining the expected LOI baseline percent of that soil type using USDA 

web soil survey data. One LOI soil analysis from a CP-10 field was excluded from 

analysis, because the LOI percent was very high (more than 6 standard deviations from 

the mean, and nearly double the value of the next-highest data point); it was suspected 

that there was soil lost during analysis.  

Results 

Soil Organic Carbon Difference in CRP Fields 

Baseline carbon, included to ensure that soil type was not driving any significant 

results, showed that CRP field soil content was higher than expected for each soil type 

(Figure 4), excluding the soil types found in CP-23 fields (1.8% lower than expected) and 

CP-25 fields (soil data unavailable from USDA soil survey). 
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Soil Carbon by CRP Age 

CRP fields analyzed by age included fields aged 6,7,8,9 and 15 years. Carbon % 

averages (Figure 5) steadily increased with increasing CRP age. Across the timeline 

carbon % increased from 3.39% to 10.18%, an increase of  6.79% over the 9-year 

timeline. Bulk density averages (Figure 5) steadily declined with increasing CRP age, 

Figure 4: Average soil organic carbon (SOC) difference in LOI% between baseline 

SOC expected for soil type and SOC in CRP soil samples for each CRP program 

assessed. 
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decreasing from 1.61 g dry soil/cm3 to 1.10 g dry soil/cm3, a decrease  of0.51 g dry 

soil/cm3. Total carbon content averages (Figure 5) showed a steady increase as the CRP 

field increased in age. CRP total soil carbon increased from 0.054 g C /cm3 to 0.112 g C 

/cm³ across the nine-year timeline. This implies a total carbon sequestration rate of 6.4 

mg C/cm3, or 0.96 kg C/m2 in the top 15 cm of soil. 

 

Figure 5: Difference in LOI% (top), bulk density (middle) and total carbon sequestered 

(bottom) by CRP age. Each point represents a single soil sample. 
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Carbon in Paired CRP and Corn Fields  

CRP fields had significantly higher carbon concentration (%C) than adjacent corn 

fields (Table 2: p<0.0001), averaging 7.6% Loss On Ignition compared to 5.5% in corn 

fields (Figure 6 ). However, bulk density differences between the four paired corn and 

CRP fields showed a significant difference (Table 2: p < 0.0001) between the two 

different habitats as well (Figure 7).  

 

Table 2: LOI%, bulk density and total carbon content significance between paired corn 

and CRP fields. 

 LOI% Bulk Density Total carbon 

content 

 F1,40 P F1,40 P F1,40 P 

Site 57.12555 <.0001 372.5618 <.0001 96.62614 <.0001 

Field Type 18.84875 0.0001 17.8052 0.0001 13.91953 0.0006 
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The corn fields had a higher bulk density with an average of 1.51 g/cm3 compared 

to 1.33 g/cm3 for CRP fields (Figure 7). While corn fields had lower carbon concentration 

(%LOI), their higher bulk densities means that the total carbon content (g C/cm3) was 

only slightly but still significantly (p = 0.0006) lower in corn (0.081 g C / cm3) compared 

to CRP (0.098 g C / cm3) fields (Figure 8). 

Figure 6: Carbon concentration between specific paired corn and CRP fields measured in 

LOI percent (left). Carbon concentration averages of all paired corn and CRP fields 

(habitat: prairie) measured in LOI percent (right). 
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Figure 8: Total soil carbon between specific paired corn and CRP fields (left). Total 

soil carbon between all paired corn and CRP (habitat: prairie) fields (right). 

Figure 7: Bulk density between specific paired corn and CRP fields (left). Average 

bulk density between all paired corn and CRP (habitat: prairie) fields (right). 
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Three of the five paired CRP fields had significantly higher total carbon content 

than their adjacent paired corn fields (paired t-tests), while the other two CRP fields had a 

statistically insignificant lower total carbon content than adjacent corn fields (Figure 6).   

Total carbon content was significantly (p = 0.032) higher at Brindle 1 prairie 

(0.097 g C / cm3) compared to Brindle 1 corn (0.080 g C / cm3) , Stone prairie (0.108 g C 

/ cm3) and Stone corn (0.084 g C / cm3) were also significantly different (p = 0.004) and 

Moseley prairie (0.092 g C / cm3) was significantly different (p=0.0001) from Moseley 

corn (0.049 g C / cm3).  The two paired corn-CRP fields where corn showed a higher LOI 

percent were not significantly different (Brindle 2: p=0.848, Miller: p=0.268). 

Soil Carbon by CRP Type 

When comparing LOI percent by CRP type, CP-23 had the highest LOI percent 

(8.97%) and CP-25 had the lowest LOI percent (3.25%). Bulk density by CRP type was 

significantly different (p=0.0061); bulk density was highest in CP-42 fields (1.59 g C 

/cm3) and the lowest in CP-23 (1.20 g C /cm3) with a difference of up to 0.39 g/cm3 

between CRP types that were analyzed (Table 3). Taking bulk density into consideration 

the lowest total soil carbon content was found in CP-42, the youngest program (0.063 g C 

/cm3). The highest total carbon content was found in CP-10 (0.095 g C/cm3); these fields 

are likely older than the CRP contract, as this program is used for enrolling existing 

grasslands. While age was not a variable included in this analysis, the site age is similar 

and not significantly different among specific conservation practice groups (F6,53= 

1.3101; p=0.2689). 
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Table 3: Soil carbon concentration, bulk density and total soil carbon found by CP 

practice type. 

CP Practice Carbon 

concentration 

(LOI%) 

Bulk Density (g 

dry soil/cm3 

Total carbon (g 

C/cm3) 

10 5.533481 1.356977 0.6883433 

2 5.076899 1.419403 0.06941173 

23 7.148702 1.224452 0.07926510 

25 4.831820 1.468102 0.06298927 

38 4.276120 1.534753 0.06298927 

42 4.601478 1.519883 0.06748453 

4D 4.886987 1.449668 0.06560547 

 

Discussion 

While carbon sequestration is not an ecosystem service directly targeted by CRP 

fields, they have the potential to sequester large amounts of carbon as the land is 

converted from agricultural production to management for perennial vegetation cover 

(Gebhart et al. 1994; Li et al. 2017). The purpose of this study was to determine if CRP 

fields provide increased carbon sequestration in agricultural landscapes. Total soil carbon 

was significantly higher in CRP fields when compared to adjacent corn fields, indicating 

that CRP has an increased carbon sequestration rate over agricultural fields. CRP fields 

also showed increased total soil carbon when compared to expected soil carbon content 

of individual soil types. This indicates that, not only do CRP fields provide more carbon 
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sequestration than agricultural fields, but they also provide increased carbon 

sequestration than is expected for a given soil type. 

The difference in soil carbon concentration in CRP fields compared to baseline 

soil carbon concentration, based on the USDA web soil survey showed a trend of 

increased soil carbon concentration in CRP fields, confirming that soil type was not a 

driver of soil carbon results. The only CRP type where soil carbon was below what was 

expected for the given soil type was CP-23. CP-23 is a wetland program and as such, 

fields enrolled in this program are required to be in a 100-yr floodplain with at least 50% 

of the field containing hydric soils. Wet, hydric soils are anoxic and therefore are capable 

of storing soil carbon for longer periods of time; it is likely that these soils would lose a 

significant amount of carbon after mechanical disturbances that aerated the soil, and 

would take longer to return to expected soil carbon levels for that soil type. Since these 

were formerly agricultural fields, this is likely showing that there are still effects from 

aeration of the soil through plowing practices releasing trapped soil carbon.   

Total soil carbon, which is the important response variable when it comes to 

climate change was found by determining the carbon concentration (LOI%) within a 

given density, or mass per volume of soil. When total soil carbon was compared between 

paired CRP and corn fields, there were mixed results and high variability between carbon 

concentration and bulk density results. Averaged across all fields, there was significantly 

more total carbon in CRP fields than in adjacent corn fields, providing strong evidence 

for increased C sequestration in CRP fields. Still, while three of the five CRP fields 
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analyzed had significantly higher total soil carbon, the two CRP fields that had lower 

total soil carbon were not statistically different from their paired corn fields. 

Soils have long been known for being inherently variable (Mader 1963) and our 

results confirm that better estimates would be obtained by sampling more sites. Soil bulk 

density and soil carbon content is highly correlated with soil texture and aeration as well 

as cultivation and history (Murphy et al. 2006; Shah et al. 2017). Therefore, these results 

likely depend on time since prairie was established, soil type, and history of management 

on both fields, explaining how we could see a variance in comparisons between paired 

corn-prairie fields. Furthermore, evidence of past agricultural management, including 

higher bulk density and lower percent soil carbon, can be seen in restored prairie soils 

more than 50 years after the disturbance (Kucharik et al. 2006). Because past 

management histories for our sites were unknown, this may have contributed to the 

observed variability.  

When the paired fields were averaged for each variable (LOI%, bulk density and 

total soil carbon) the results were significant between the two habitat types. Carbon 

concentration was 40% higher in CRP fields than corn fields; even when taking the 

significantly lower bulk density of CRP fields into account, total soil carbon (g C/cm3) 

was slightly, but still significantly higher in CRP fields. This result shows that CRP fields 

can give increased carbon sequestration over crop fields in comparable soil types in Iowa. 

Total soil carbon in Iowa CRP fields also showed a steady increase over time,  consistent 

with findings that after the end of agricultural disturbance, total soil carbon steadily 

increases (Murphy et al. 2006). However, since these CRP contracts are typically 
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between 10-15 years, the question remains if these benefits will last once the contracts 

expire.  Between 2013 and 2018, approximately 4.4 million hectares of land in CRP 

expired (FSA 2012) and higher corn and soybean  prices could motivate farmers to return 

CRP land to crop production (Du et al. 2008; Secchi et al. 2009). Ruan and Robertson 

(2013) found indications that the conversion of CRP land can not only increase emissions 

of CO2 but can cause the loss of the CRP land’s total greenhouse mitigation ability. This 

can be further exacerbated by the type of tillage that is used to convert a field.  Using 

conventional tillage practices can cost around 8 years’ worth of lost carbon sequestration 

after a single time (Ruan and Robertson 2013). 

CRP fields enrolled under different conservation practices showed some small, 

nonsignificant differences in total soil carbon between practices. While it is difficult to 

draw definitive conclusions from this result because of limited data, it is possible that 

different CRP practices which have different vegetation types could lead to differences in 

carbon sequestration. It has been observed that differences in functional diversity may 

affect carbon sequestration rates over a time scale of decades (Ampleman et al. 2013). 

While total soil carbon was the focus of this research as it is the most important 

factor in soil carbon sequestration, bulk density results in themselves are important as 

they have indications for soil health. When bulk density is increased, the porosity of the 

soil decreases, less pores in the soil hinders the movement of water, nutrients and 

microorganism activity, all of which have impacts on soil productivity and processes 

(Duiker 2005).  
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Bulk density results from the paired CRP and corn fields, showed that CRP fields 

significantly decrease soil bulk density when compared to corn fields in similar soil types 

and climate in Iowa. Bulk density also decreases in CRP fields with increasing age, 

indicating that as CRP fields age the soil becomes less compact with more air pores in the 

soil, likely due to less compaction from agricultural equipment and increased root 

penetration of the soil as seen in other studies (Murphy et al. 2006).   

Bulk density was also slightly different between CRP types; the highest bulk 

density was found in CP-42 (pollinator habitat) fields and the lowest was found in CP-23 

(wetland habitat). The highest bulk density was likely found in the CP-42 practice as it 

was the youngest average field age between practices analyzed and likely had the most 

recent mechanical disturbance due to agricultural practices, such as plowing. Bulk 

density has been shown to increase under continual agricultural management which 

causes soil compaction by farm equipment and depletion of soil organic matter 

decreasing the amount of soil porosity, therefore increasing bulk density (Murphy et al. 

2004). Conclusions about whether the specific CRP enrollment program a field is 

enrolled in makes a significant difference in the bulk density of the soil cannot be made 

due to the large number of different CRP practices and the limited amount of data for 

each practice. However, Murphy et al. (2006) found a difference in bulk density between 

warm-season, cool-season and warm-season native fields as well as the previous 

agricultural management at the site, suggesting that true differences may exist among 

CRP practices. 



30 

Overall, the results show that CRP fields in Iowa create additional ecosystem 

services outside of their targeted conservation goals. CRP fields not only increase total 

soil carbon, an important sink for atmospheric carbon dioxide that is contributing to 

global climate change, they also decrease soil bulk density and thereby improve soil 

health.  

  



31 

CHAPTER THREE 

WEEDY INVASION IN CRP FIELDS 

Invasive Species 

Flowering plants have been successful colonizers throughout history as they have 

the potential to travel long distances via wind, ocean currents and animal vectors and 

have evolved seeds that are well-adapted to surviving hardships involved in long distance 

traveling (Ridley 1990; Novak and Mack 2001). However, humans have become the most 

important mode of long-distance transportation for plants (Ridley 1990; Novak and Mack 

2001). Due to anthropogenic activities, globalization has facilitated the movement of 

countless plant species across natural geographic barriers and many plants have 

established successful populations in new geographic areas (Theoharides and Dukes 

2007; Milton 2004; van Kleunen et al. 2015 ). 

Many species transported to novel environments never establish in the new range; 

however, a small number become established and naturalized near the site of release but 

do not colonize new areas (Mack 1996). A subset of these established species create 

viable permanent populations that spread over large new areas (Mack and Lonsdale 

2001). When these species cause serious human, economic, or ecological harm they are 

considered invasive species (Tang et al. 2019; Mack and Lonsdale 2001). 

The spread of these invasive species cause severe economic and ecological 

consequences.  In the United States alone, invasive species cause approximately $120 

billion in damages and control costs a year (Pimentel et al. 2005; Lodge et al. 2006), 

around $26 billion in control and damage are incurred annually by the agricultural sector 
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from weedy plant species (Pimentel et al. 2005). Invasive species are also the second 

leading cause of biodiversity loss behind habitat loss (Germain et al. 2019). In fact, 

nearly one-half of species listed as threatened or endangered under the United States 

Endangered Species Act are considered to be threatened or endangered primarily because 

of an invasive species (Wilcove et al. 1998). 

Invasive plant species can create debilitating consequences as they have the 

potential to alter ecosystems. (DAntonio and Vitousek 1992; Vitousek 1990; Hobbs and 

Mooney 1986; Braithwaite and Lonsdale 1987). There are several ways that invasive 

plant species can have negative effects on an ecosystem; they can alter the hydrology, 

nutrient cycling, soil formation and change the natural disturbance regime (Vitousek 

1990 ). They commonly outcompete native species for resources, including reducing the 

amount of water, sunlight, space and nutrients or food that are available to the native 

species (Vitousek 1990) and by causing diseases that native species have not been 

exposed to. Native species and invasive species can also hybridize (Vila et al. 2000), 

altering the genetic makeup and reducing the gene pool of the native species.  This 

problem is likely to get worse as global temperatures rise and precipitation patterns 

change as a result of climate change (Ricciardi 2000; Dukes and Mooney 1999), invasive 

species will likely be enabled to establish and invade new areas. 

Invasive plants  commonly share several key life history characteristics. Many 

plant invaders are asexually reproducing species (Amsellem et al. 2001; Price and Jain 

1981), while sexually reproducing species tend to have high reproduction rates with 

smaller seed size, large seed yields, and higher rates of seed germination and growth 
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(Lavergne and Molofsky 2007). They often have short generation times, allowing them to 

outnumber native species quickly after a disturbance. They also tend to have few or no 

natural predators, parasites, or diseases in the environment they are introduced to (Wolfe 

2002; Torchin et al. 2003). These species are commonly generalist and tolerant of many 

different environmental conditions, showing ecological plasticity (Maron et al. 2004).  ,  

Many invasive plants are pioneer or colonizer species, the first species to recolonize 

disturbed or degraded areas. While many invasive species share one or more of these 

characteristics, it is not necessary for a species to possess all these qualities to be an 

invasive species. 

Many species with these characteristics, such as those with small seeds and a high 

potential for rapid growth, depend on the exposure of resource rich areas with little 

competition to successfully establish a population (Burke and Grime 1996). These 

conditions along with the characteristics of a “good colonizer” (Bazzaz 1986) allows 

weeds to take advantage when these conditions suddenly appear in the landscape (Burke 

and Grime 1996). Seeds of these invasive species are commonly transported via vehicles, 

livestock, and clothing as well as within commercial seed lots (Mack and Lonsdale 2001; 

Muenscher 1987) such as those used to plant CRP fields. Invasive plants may also be 

transported intentionally for uses such as crops, ornamentals and for erosion control 

activities (Mack and Lonsdale 2001). 

In the United States nearly 500 species of native and non-native plants have 

become weedy pests in agricultural landscapes (Pimentel et al. 1989) and approximately 

73% of these are non-native species (Pimentel et al. 2000). Disturbance regimes create 
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open spaces for these invaders to colonize, especially in agricultural ecosystems. The 

amount of disturbance in an area directly affects the potential success of invaders because 

it decreases the ability of native plants to compete (Burke and Grime 1996; Lonsdale 

1999). 

Intensive agricultural systems, such as those in the Midwestern U.S., can increase 

weed propagation. In fact, as the management of a field is intensified, the greater the 

potential is for habitats adjacent to those fields to become a source of weeds (Boatman et 

al. 1994). One of the reasons for this is that frequent disturbance and fragmentation 

promote plant invasions (Robertson et al. 1994; Clark and Ji 1995; Cavers and Harper 

1967; Crawley et al. 1986). Another reason for this is that agricultural disturbance 

regimes are often associated with an increase in nutrient availability in the surrounding 

landscape. In habitats with these characteristics of disturbance and increased resources, 

successful plant invasions are more likely to occur (Rejmanek 1989; Burke and Grime 

1996). 

CRP fields bring many ecosystem services, including biodiversity to agricultural 

landscapes that otherwise consist mostly of large crop monocultures. CRP sites are 

seeded and planted with native and beneficial grasses, forbs and legumes creating 

valuable native habitat. While these fields can be beneficial to native species, they can 

also create a lot of potential habitat for weedy species since the intensely managed 

agricultural landscape has many factors that benefit their establishment. Therefore, CRP 

fields should be assessed not only for the environmental benefits they bring, but also for 

any potential negative environmental effects, such as promoting the invasion and spread 
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of weeds. Two weeds of particular concern in Midwestern CRP fields are Phalaris 

arundincea and Pastinaca sativa . 

Reed Canary Grass 

Reed canary grass (Phalaris arundincea, hereafter “Phalaris” ) is a grass that has 

hairless stems with bluish green tapering leaves. The panicles flower from May to mid-

June and are green to purple in color, fading to beige as the seeds ripen.  

Phalaris is believed to be native to all temperate regions in the northern 

hemisphere. However, in North America a genotype of Phalaris has emerged that is 

considered a noxious weed species. Unlike its native counterpart, this noxious genotype 

creates single species monocultures. The origin of this invasive genotype has not been 

positively identified; it is a cryptogenic species (Carlton 1996; Galatowitsch et al. 1999). 

There are a few different theories as to how it became a noxious weed.  One hypothesis 

with some support is that it was cultivated in Europe as a forage crop for cattle, brought 

to the United States where it invaded native ecosystems (Merigliano and Lesica 1998; 

Paveglio and Kilbride 2000; Lavergne and Molofsky 2004, 2007; Kercher et al. 2006). 

Another theory is that this cultivated version was brought from Europe and then 

hybridized with our native Phalaris in the United States. 

Phalaris Biology. The invasive genotype of Phalaris is a cool-season, C3 

perennial grass (Kephart and Buxton 1993; Carlton 1996). Phalaris plants are self-sterile 

and therefore sexually reproduce largely through cross-pollination (Ostrem 1987, 1988a), 

but it also grows asexually along dense rhizomes causing it to form dense sod-forming 
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stands or clumps, rather than individual stems (Galatowitsch et al. 1999). These rhizomes 

store carbohydrates and allow for early, rapid growth of Phalaris in the early spring, with 

tillers sprouting from the rhizomes (Carlton 1996; Tamura and Moriyama 2001). Phalaris 

rapidly develops aboveground biomass to photosynthesize, therefore shading out many 

competitors (He et al. 2010). 

Phalaris has strong reproduction capability through sexual and asexual means, 

and combined with its ability to grow rapidly, it frequently forms dense stands in 

wetlands (He et al. 2010). While it is most productive in wet environments, it is adapted 

to a large range in soil moisture (Galatowitsch et al. 1999; Zeiders and Sherwood 1985) 

and can even tolerate drought conditions (Lavergne and Molofsky 2004). These 

adaptations allow Phalaris to survive and compete in a gradient of soil moisture 

conditions including wet meadows and mesic grasslands. 

Phalaris has a very high annual seed yield (Baltensperger and Kalton 1958; 

Ostrem 1988b). These seeds express dormancy and are therefore important components 

in seed banks (Odland 1997; Odland and del Moral 2002), allowing them to take 

advantage of newly disturbed environments. Newly disturbed areas allow seed 

germination of Phalaris as it requires light and grows best in moist soils (Vose 1962; 

Landgraff and Junttila 1979; Lindig-Cisneros and Zedler 2001, 2002) with the highest 

germination success in soils that are water saturated (Coops and Van der Velde 1995; 

Kellogg et al. 2003). Many of these characteristics have allowed Phalaris to displace 

native wetland species and form large monocultures. It is considered one of the top 

noxious weeds invading wetlands in the Midwestern U.S. (He et al. 2010; Jakubowski et 
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al. 2011). Kercher and Zedler (2004) found that in a wet-prairie grassland, fertilization 

and disturbance, both common in an agricultural landscape, increased both the biomass 

and frequency of Phalaris. Disturbance was found to decrease the total biomass of 

resident wet-prairie species, thereby increasing the amount of available light and space 

allowing Phalaris to expand within wet-prairie (Kercher and Zedler 2004). 

Wild Parsnip 

Wild parsnip (Pastinaca sativa, hereafter referred to as Pastinaca) is an 

herbaceous biennial plant that sometimes behaves as a monocarpic perennial; it dies once 

it has flowered and set seed (Baskin and Baskin 1979; Gleason and Cronquist 1991). Its 

native range is throughout Europe and temperate Asia (Averill and Ditommaso 2007) and 

it is the only species of Pastinaca in the United States, where it can be found in 45 of the 

50 U.S. states (excluding Alabama, Florida, Georgia, Mississippi, and Hawaii)  (Averill 

and Ditommaso 2007). Pastinaca is believed to have been cultivated in early Europe and 

widely grown there as a crop by the 16thth century (Averill and Ditommaso 2007). 

Pastinaca was introduced to North America by European settlers and was considered 

common by the early 17th century.  It is believed that this cultivated Pastinaca escaped 

and reverted to its wild form (Averill and Ditommaso 2007). 

Pastinaca Biology. Pastinaca has a deep, thick taproot that can reach depths of up 

to 1.5 m  (Gleason and Cronquist 1991). Pastinaca growth starts as short rosettes that 

have pinnately compound alternately arranged leaves, that are around 15 cm in length 

(Lorenzi and Jeffery 1987). It remains in this stage for approximately two years, at which 
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time the plants grow tall, stout stems (Baskin and Baskin 1979). Inflorescences consist of 

large, compound umbels that are between 10-20 cm in width. Flowers have yellow petals 

and umbels on each individual plant consist of both male and hermaphroditic flowers 

(Nitao and Zangerl 1987) with mechanisms that prevent cross-pollination of flowers on 

the same plant (Cruden and Hermann-Parker 1977). Each flower produces two flattened 

seeds (Gleason and Cronquist 1991); Pastinaca reproduces only by seed; it does not 

reproduce vegetatively (Hendrix and Trapp 1992) However, Pastinaca plants create a 

large amount of seed that can stay viable in seed banks for years, contributing to its 

ability to persist and reproduce (Schaefer 2015). 

Pastinaca has been declared a noxious weed in Ohio and Minnesota (USDA 

NRCS 2006; MN DNR 2020) and invasive in Kentucky, Nebraska, Tennessee and 

Wisconsin (Averill and Ditommaso 2007; Haragan 2015). It can cause 

phytophotodermatitis in humans if bare skin is exposed to the sap full of 

furanocoumarins, which cause a photoreaction when exposed to sunlight (Averill and 

Ditommaso 2007). Other concerns are that Pastinaca invasion reduces the quality of 

agricultural forage crops (MDA 2020), as they can harm cattle when ingested and they 

may also decrease habitat quality for honeybees (Apis mellifera). Honeybees do not use 

or pollinate Pastinaca and it is outcompeting and displacing other important plants that 

are used by honeybees (Averill and Ditommaso 2007). 

While Pastinaca grows best in moist, nutrient rich soils, it can survive well under 

poor soil conditions (Gleason and Cronquist 1991; Averill and Ditommaso 2007). In fact, 

it has been observed that under drought conditions, Pastinaca growth increased, while 
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perennial grass growth decreased (Sternberg et al. 1999). It is commonly found in road 

ditches as well as other disturbed habitats and along patch edges. While it is slow to 

establish, once it does it quickly spreads and can modify habitats from dry to wet-moist 

soil conditions. It has also been found to invade native prairies (MN DNR 2020). With its 

ability to invade a range of habitat conditions and its prevalence along roadsides, 

Pastinaca has the ability and opportunity to invade CRP fields. 

This chapter will further explore the weedy invasion of Phalaris and Pastinaca 

within CRP sites in the Midwestern agricultural landscape. While Phalaris invasion in 

wetlands has been well explored in scientific literature, exploring its potential to invade 

and degrade CRP fields is lacking in the scientific literature. The invasive potential of 

Pastinaca on the other hand, is widely lacking in the literature, let alone its potential to 

invade CRP fields. Agricultural practices commonly create prime conditions and 

opportunities within the surrounding landscape for invasives such as Phalaris and 

Pastinaca to establish and thrive. Therefore, they have potential to invade and degrade 

CRP fields. 

The specific questions that are being asked in this research are: 

1. Do Phalaris and Pastinaca invade specific CRP practices more 

frequently?   

2. Does the invasion success of Phalaris and Pastinaca change with the age 

of the CRP establishment? 
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3. Do disturbance or vegetation characteristics (grass & forb richness and % 

cover, % bare ground) predict invasion of Phalaris and Pastinaca in CRP 

fields? 

Methods 

Study Area 

Edge-of-field surveys were used to visually assess 1,793 fields from 2016-2017 in 

14 states( IA, MO, MN, CO, ID, KS, MT, ND, NE, OK, OR, SD, TX and WA) as part of 

a larger USGS project, I personally surveyed fields in IA, MN and MO but all surveyors 

used identical protocols and data collection forms. The fields were enrolled in the 

following CRP programs: CP-1, CP-2, CP-10, CP-4D, CP-23, CP-25, CP-33, CP-37 CP-

38 and CP-42. Fields were randomly chosen from a subset of fields enrolled in the CRP 

program. Requirements for the subset of CRP fields included were that they were within 

at least 25 m of an existing road centerline (in order to account for the width of the road 

and adjacent right of ways) and that the fields be at least 2.0 hectares in size (an 

exception was made for CP-42, which required a minimum of 0.8 hectare, in order to 

reflect the smaller acreage typical of these fields.    

At each edge-of-field survey, each forb and grass species visible from the edge of 

the field was recorded as well as each species’ percent cover; finally, overall percent 

cover of forb, grass, shrub, trees and bare ground was determined for the entire field. For 

overall cover estimates and each individual species estimate, percentages were rounded to 

the nearest 5%. The presence of shrub and trees was very rare in areas where the CRP 
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fields were selected to carry out further analysis (see “Delineation of Distribution Range” 

below). Therefore, the percent cover of shrub and trees were not included in the 

following statistical analyses.  

Validation 

In order to validate data collected from roadside surveys, in-field surveys were 

done in a subset of 68 fields (28 in Iowa, 19 in Colorado and 21 in Idaho), including 

fields enrolled in the following programs: CP-2, CP-10, CP-4D, CP-23, CP-25, CP-38 

and CP-42.  At each location, a regular roadside survey was first conducted, followed by 

an in-field survey. 

In-field surveys consisted of  detailed sampling of vegetation in the field from 

four 1 m2  quadrats spaced 25 m (or 6 m) apart along a 100 m (or 25 m) transect. A total 

of four transects were sampled from each field, with 25 m (or 6 m) between each transect. 

Transects were organized in a pattern that best represented the vegetation in the entire 

field (Figures:9,10,11) .  

Transects started 15 m (or 5 m) from the edge of the field, in order to minimize 

any edge effect. In each quadrat the percentage of each species was estimated to the 

nearest 1%, as was the overall percentage of forbs, grasses, shrubs, trees and bare ground. 

In total there were 16 vegetation samples per field. 
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Figure 9: 100 m sampling design for 

uniform field with equal margins. 

Figure 10: 100 m sampling 

design for field with 

unequal margins. 
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Data Analysis 

Delineation of Distribution Range. In this study I focus on local vegetation factors 

that may influence the presence/absence of a plant species within its potential distribution 

range. However, the presence/absence of a species is also limited by its geographic range, 

caused by dispersal limitation or climate and geological factors, which is beyond the 

scope of this study. In order to outline the potential distribution range for Phalaris and 

Pastinaca, I used the “minimum convex polygon” method in ArcGIS to delineate the 

range where Phalaris and Pastinaca was distributed (Figures 16 and 22).  

The CRP sites outside each species’ distribution range were not included in the 

following analysis for each species (i.e. the absence of each species in these sites was 

considered to be due to climate or geological factors, not local factors).  

Figure 11: 60 m sampling 

design for smaller and 

irregular shaped fields. 
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Generalized Linear Regression. The CRP fields surveyed within the created minimum 

convex polygons were further analyzed in R version 3.5.2 (R Core Team 2019) using a 

logistic regression to assess the influence of several factors on the presence/absence of 

Phalaris and Pastinaca. The presence/absence of Phalaris and Pastinaca was used as a 

response variable in the model, while forb richness, grass richness, total grass cover, total 

forb cover, total bare ground, and site expiration year were used as predictor variables. In 

the Phalaris analysis, the presence of Phalaris was removed from grass species richness 

count and the coverage of Phalaris was removed from the total percent grass cover; 

similarly, in the Pastinaca analysis, the presence of Pastinaca was removed from the 

total forb species count and its coverage was not counted toward the total forb cover.  

Results 

Validation 

Grass coverage estimated from the roadside was higher than the mean grass 

coverage observed from within the field (Figures 12 and 15; roadside-infield = 

13.415.0%); this was especially true in Colorado and Idaho but less so in Iowa where the 

majority of Phalaris and Pastinaca were found. Forb coverage was also higher in 

roadside estimates than from within the field measurements (Figure 13; roadside-infield = 

1.913.1%) especially in Colorado. Grass coverage and forb coverage estimated from 

roadside surveys had a strong positive correlation with the grass and forb coverage 

measured in the in-field surveys (Figure 14 and 15; grass coverage p-value=1.07e-11, 

R2=0.5059; forb coverage p-value<2e-16, R2=0.7174). The strong correlations between 
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in-field and roadside estimates suggest that roadside estimates provide reasonably similar 

estimates as more traditional in-field measures. 

 

 

Figure 12: Differences between roadside and in-field grass cover estimate. 
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Figure 13: Differences between roadside and in-field cover estimate. 

 

 

Figure 14: Correlation of forb coverage between in-field survey and roadside survey. 
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Figure 15: Correlation of grass coverage between in-field survey and roadside survey. 

 

Phalaris 

In its delineated range, Phalaris was present in 149 fields and absent in 484 

(Figure 16; Table 5). Phalaris was present in all CRP conservation practices (Table 6) 

surveyed; and in 9 out of 14 states (Table 5). While Phalaris was present in OR, ID, and 

WA, for the purposes of this study I limited the analysis to climatically similar 

Midwestern US (MN, MO, ND, SD and IA) and did not include the geographically 

disjunct population of the Pacific Northwest. Phalaris range distribution within the 

created MCP showed Phalaris range in CRP fields covering portions of Minnesota, Iowa, 

North Dakota, South Dakota and Missouri (Figure 16).   
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Figure 16: Minimum convex polygon for the distribution of Phalaris based on Phalaris 

presence (red circles) and absence (green circles) in CRP fields. 
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Phalaris presence was positively and significantly influenced by the type of CRP 

practice (Table 4; p=0.0004), due to higher presence in CP-23 (wetland practice) CRP 

fields. No other CP types were significantly different from one another (Tukey’s HSD 

post-hoc tests, p > 0.05; Figure 17; Table 6).  

 

Table 4: ANOVA results of logistic regression analysis testing the effect of local 

vegetation factors on Phalaris presence. 

Source DF Deviance Resid. Df Resid. Dev Pr(>Chi) 

Intercept   632 690.86  

CP type 8 40.504 624 650.36 2.58E-06 

Forb richness 1 2.677 623 647.68 0.101826 

Grass richness 1 13.703 622 633.98 0.0002141 

Grass cover 1 52.211 621 581.77 4.98E-13 

Forb cover 1 45.617 620 536.15 1.44E-11 

Bare ground 1 61.866 619 474.28 3.68E-15 

Field age 1 0.044 618 474.24 0.8331895 
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Table 5: Phalaris presence, absence and prevalence in all 14 states surveyed. 

State 
Absence Presence Prevalence 

CO 118 0 0% 

IA 145 33 18.5% 

ID 115 1 0.86% 

KS 174 1 0.57% 

MN 80 71 47% 

MO 123 22 15.2% 

MT 55 0 0% 

ND 164 15 8.4% 

NE 155 0 0% 

OK 79 0 0% 

OR 82 1 1.2% 

SD 138 13 8.6% 

TX 101 0 0% 

WA 63 5 7.4% 

 

Table 6: Phalaris presence, absence and prevalence in each CP program surveyed within 

delineated range; numbers (top) indicate the conservation practice (CP) number. 

 1 2 10 23 25 33 37 38 42 4D 

Absence 65 67 58 36 71 34 0 75 40 38 

Presence 14 14 14 39 21 6 0 14 9 18 

Prevalence (%) 17.7 17.3 19.4 52.0 22.8 15.0 0  7.7 18.3 32.1 
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Figure 17: Phalaris presence in CRP fields based on CRP program type the field has 

been enrolled in. 1 (blue) indicates Phalaris presence, 0 (red) indicates Phalaris absence. 

 

The number of years the CRP field had been enrolled in the program had no 

significant effect (p=0.8332) on the presence of Phalaris in the field. CRP fields with 

higher grass species richness (p=0.0128; Figure 18) and higher percent grass cover (p < 

2e-16; Figure 19) had a lower likelihood of Phalaris presence. Greater forb species 

richness had no significant effect on the presence of Phalaris in CRP fields (p=0.848) 

and greater forb cover in the CRP fields decreased the chances of Phalaris being present 

(p=1.63e-07; Figure 20). Contrary to expectations, the amount of bare soil present 

showed a significant negative relationship with Phalaris presence (p=3.00e-12; Figure 
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21), fields with more bare soil areas were less likely to have Phalaris present. This result 

could be a correlation between the presence of Phalaris filling in bare soil areas and not 

the cause of Phalaris presence.  

 

Figure 18: Relationship between the presence of Phalaris and grass species richness 

(excluding Phalaris) by CP type. 

 

 

Figure 19: Relationship between the presence of Phalaris and percent grass cover 

(excluding Phalaris) by CP type. 
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Figure 20: Relationship between presence of Phalaris and percent forb cover by CP type. 

 

 

Figure 21: Relationship between presence of Phalaris and percent bare ground cover by 

CP type. 

 

Pastinaca 

Pastinaca was present in 3 out of 14 states: Iowa, Minnesota and Missouri (Figure 

22; Table 7). Within the delineated range of Pastinaca, the species was present in 64 
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fields and absent from 265 fields (Figure 22; Table 7). Pastinaca was found in at least 

one field of each conservation practice and its presence did not vary among CP types 

(Tables 8 & 9). The number of years the CRP field had been enrolled in the CRP program 

was not a significant predictor of the presence of Pastinaca in the field (p=0.9993). 

 

Figure 22: Minimum convex polygon for the distribution of Pastinaca based on 

Pastinaca presence (red circles) and absence (green circles) in CRP fields. 



55 

Table 7: Pastinaca presence, absence and prevalence in all 14 states surveyed. 

State 
Absence Presence Prevalence 

CO 118 0 0% 

IA 143 35 19.7% 

ID 116 0 0% 

KS 175 0 0% 

MN 149 2 1.3% 

MO 118 27 18.6% 

MT 55 0 0% 

ND 179 0 0% 

NE 155 0 0% 

OK 79 0 0% 

OR 83 0 0% 

SD 151 0 0% 

TX 101 0 0% 

WA 68 0 0% 

 

Table 8: Pastinaca presence, absence and prevalence in each CP program surveyed; 

numbers (top) indicate the conservation practice (CP) number. 

 1 2 10 23 25 33 37 38 42 4D 

Absence 246 265 250 110 146 86 47 175 153 212 

Presence 10 7 5 2 12 5 2 7 9 19 

Prevalence 

(%) 

3.9 2.6 2.0 1.8% 7.6 5.5 4.1 3.8 5.6 8.2 
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Table 9: ANOVA results of logistic regression analysis testing the effect of local 

vegetation factors on Pastinaca presence. 

Source Df Deviance Resid. Df Resid. Dev Pr(>Chi) 

Intercept   225 265.56  

CP type 8 12.14 217 253.42 0.1450652 

Forb richness 1 0.3249 216 253.1 0.5686727 

Grass richness 1 1.3331 215 251.76 0.2482538 

Grass cover 1 9.1992 214 242.56 0.0024212 

Forb cover 1 11.745 213 230.82 0.0006101 

Bare ground 1 5.3959 212 225.42 0.0201843 

Field age 1 0.0001 211 225.42 0.9931492 

 

Pastinaca presence was not significantly correlated with either forb or grass 

species richness. Increased forb cover (excluding Pastinaca) significantly reduced 

Pastinaca presence (p=0.0006; Figure 23); but higher grass cover increased Pastinaca 

presence (p=0.002; Figure 24). Percent bare soil found in a CRP field (Figure 25) had a 

significant effect of the presence of Pastinaca (p=0.02); contrary to expectations CRP 

fields that had higher bare soil areas were less likely to have Pastinaca present. This 

result could be a correlation between the presence of Pastinaca filling in bare soil areas 

and not the cause of Pastinaca presence. 
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Figure 23: Relationship between presence of Pastinaca and percent forb cover (excluding 

Pastinaca). 

 

 

Figure 24: Relationship between presence of Pastinaca and percent grass cover by CP 

type. 
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Figure 25: Relationship between presence of Pastinaca and percent bare ground cover by 

CP type. 

 

Discussion 

The purpose of CRP is to improve ecosystem services on sensitive agricultural 

lands. These agricultural landscapes create conditions favorable for weedy species, 

through large and frequent disturbances, transportation of invasive seeds on cattle and 

farm equipment and increased nutrient availability. These factors increase the chances 

that CRP fields can be invaded by weedy species that can have many negative economic 

and ecological consequences. This research aimed to determine what vegetation factors 

influence the presence of Phalaris and Pastinaca in CRP fields using a rapid roadside 

assessment. The close correspondence between our roadside assessment is a useful 

technique to rapidly survey vegetation in large numbers of CRP fields. 
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Using this method, we found that grass species richness, forb and grass cover 

were all significant factors that reduced the presence of Phalaris in CRP fields. For 

Pastinaca, forb and grass cover were the important predictors. Elton (1958) first 

proposed that more diverse communities are less susceptible to invasion, because of 

greater niche and resource utilization, and these results as well as many others (Lonsdale 

1999; Fargione and Tilman 2005; Tilman 1997) uphold the hypothesis that higher species 

richness and percent cover is expected to reduce invasibility of a community.  Forb 

species richness, however, did not have a significant effect on the presence of Phalaris or 

Pastinaca, suggesting that there are more factors than overall diversity affecting the 

resistance of a community to resistance.    

Overall, the conservation practice did not have a significant effect on the presence 

of Pastinaca, and only CP-23 fields were significantly more likely to have Phalaris 

present. Phalaris is commonly found in wetland and riparian habitats, so its association 

with CP-23 is not a surprising result.  

The less bare soil areas there were in a CRP field, the more likely it was to have 

Phalaris and Pastinaca. While this result was unexpected, one way this relationship 

might be explained is from the large monocultures that Phalaris creates when it 

establishes in a favorable area, decreasing bare soil areas. However, Pastinaca does not 

typically form large dense stands that reduce bare ground cover like Phalaris does, so 

while this explanation is possible, it seems less likely in the case of Pastinaca. This 

explanation could indicate that less bare ground areas are in response to the invasion of 

these species and not a factor causing the invasion.  
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Time since establishment was not a factor in the presence of Phalaris or 

Pastinaca in CRP fields. This result could indicate that disturbances on the site prior to 

and during reestablishment of perennial vegetation at the site created space and 

opportunity for these two species to colonize the site early in establishment. This is 

further supported by the fact that invasive species are expected to begin growth earlier 

than native species and that climate change may be increasing this phenomenon (Dickson 

et al. 2012). Considering CRP fields typically have a contract duration of 10-15 years, it 

leads to the question of how beneficial CRP fields are for native vegetation that may take 

longer to establish than “pioneer” invasive species.  

Overall conclusions suggest that increased plant cover, and to some extent 

diversity can lead to a decreased chance of invasion into CRP fields. It appears that the 

presence of Phalaris and Pastinaca was most significantly affected by the cover of the 

functional group (forb or grass) that they belong to. The importance of functional groups 

in invasion has been identified as a potential important factor in invasion before (Lanta 

and Leps 2007). The results also suggest that these weedy species invade CRP fields 

early in the establishment of the field, as the chance of Phalaris and Pastinaca presence 

was not significantly affected through the time the CRP fields are under contract. This 

suggests efforts should be made early during vegetation establishment to prevent invasion 

by these weedy species.  
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CHAPTER FOUR 

CONCLUSION 

This research took an in-depth look at two potential ecosystem services provided 

by fields enrolled in the CRP, carbon sequestration and weed invasion resistance. These  

services are not directly targeted by the CRP program, but are potentially valuable 

services. Different variables that affected these services included time, species richness 

and cover. We also found that the use of roadside surveys is a rapid and useful way to 

estimate percent forb and grass cover and is a worthwhile method of monitoring CRP 

fields. Another interesting finding is that although different conservation practices follow 

different requirements, they generally are not a significant factor in either carbon 

sequestration or weedy invasion. 

Time since the establishment of CRP had a significant effect on carbon 

sequestration in CRP fields, increasing total soil carbon with increased time. This 

indicates that if carbon sequestration is a conservation goal of a CRP field, keeping the 

field in CRP for longer periods of time will be more beneficial to soil carbon 

sequestration. Interestingly, time had no significant effect on weedy invasion in CRP 

fields, this indicates that CRP fields should be monitored early in establishment so 

preventative actions can be taken against it.  

We also found that increased species richness and cover by the same functional 

group (grass or forb) had a significant impact on the presence of Phalaris and Pastinaca. 

Phalaris was less likely to be present in fields with high grass species richness and cover 

and Pastinaca was less likely to be present in fields with high forb species richness and 
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cover. This indicates that seeding and establishing diverse forb and grass species in a 

CRP field will decrease the chance of weedy invasion, potentially keeping CRP fields 

from becoming a source of weeds that can possibly invade agricultural fields.  

When it comes to carbon sequestration and increased weedy invasion resistance, 

the specific conservation practice that the CRP field is enrolled in doesn’t seem to make a 

difference in the Midwest, with the exception of Phalaris invasion in CP-23 fields, which 

should be closely monitored for Phalaris invasion as they are likely to create 

monocultures. Although these programs have different conservation goals with different 

seeding and management requirements, carbon sequestration and weedy invasion are not 

significantly affected by these differences. Roadside surveys were validated using in-field 

surveys, where the same measurements were recorded from both the roadside and in the 

field. Results from these validated (in-field surveys) fields indicate that roadside surveys 

are a faster and sufficient replacement for in-field measurements when it comes to 

estimating species richness and cover.  

In conclusion, CRP fields bring many environmental benefits to agricultural 

landscapes, along with the many services the program aims to provide; they also provide 

benefits that are not targeted by the program, including carbon sequestration. However, it 

is important to monitor these CRP fields for potential issues as they can become a 

potential source of invasive species. Road-side surveys are a sufficient way to monitor 

these CRP fields for vegetative variables such as forb and grass species cover and 

percentage estimations of weedy invaders and can help in improving the state of these 

CRP fields.    
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