
University of Northern Iowa University of Northern Iowa 

UNI ScholarWorks UNI ScholarWorks 

Dissertations and Theses @ UNI Student Work 

5-2020 

An exploration in Ramsey theory An exploration in Ramsey theory 

Jake Weber 
University of Northern Iowa 

Let us know how access to this document benefits you 

Copyright ©2020 Jake Weber 

Follow this and additional works at: https://scholarworks.uni.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Weber, Jake, "An exploration in Ramsey theory" (2020). Dissertations and Theses @ UNI. 1022. 
https://scholarworks.uni.edu/etd/1022 

This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It 
has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI 
ScholarWorks. For more information, please contact scholarworks@uni.edu. 

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and 
time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language. 

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/etd
https://scholarworks.uni.edu/sw_gc
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/etd?utm_source=scholarworks.uni.edu%2Fetd%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.uni.edu%2Fetd%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/etd/1022?utm_source=scholarworks.uni.edu%2Fetd%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu
https://scholarworks.uni.edu/offensivematerials.html


An Exploration in Ramsey Theory

An Abstract of a Thesis

Submitted

in Partial Fulfillment

of the Requirement for the Degree

Master of Arts

Jake Weber

University of Northern Iowa

May 8, 2020



ABSTRACT

We present several introductory results in the realm of Ramsey Theory, a subfield

of Combinatorics and Graph Theory. The proofs in this thesis revolve around identifying

substructure amidst chaos. After showing the existence of Ramsey numbers of two types,

we exhibit how these two numbers are related. Shifting our focus to one of the Ramsey

number types, we provide an argument that establishes the exact Ramsey number for

h(k, 3) for k ≥ 3; this result is the highlight of this thesis. We conclude with facts that

begin to establish lower bounds on these types of Ramsey numbers for graphs requiring

more substructure.
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CHAPTER 0

Introduction

Often as individuals, we come across situations where we wonder what it would take to

guarantee a certain outcome. Just as often, mathematicians ask the same type of

question. By asking such a question, we are asserting that there is some sort of underlying

substructure that can explain when an outcome occurs.

Mathematicians love to research and uncover substructure. The problems

addressed in this thesis are no different in that we look for substructure within a graph.

Graphs are extremely useful tools. A graph is a collection of vertices and edges.

These vertices sometimes can be thought of as objects with the edges between them

indicating a relationship between the two. This characterization of a graph might sound

quite familiar. In fact, informally throughout our lives, we have been familiarizing

ourselves with graphs. For instance, a map is made up of cities (vertices) that have roads

between them (edges describing the ability to travel from a given city to another). When

in a maze, one stands at a vertex and chooses a direction to walk, selecting which edge

should be taken. Or even cooking a meal can be seen as a graph event; each vertex could

represent a state of the dinner (what is ready to eat and what is not), and each edge could

represent an action of preparing something for the meal; there are often many orders in

which things can be completed in order to finish the dinner.

Problems involving graphs characterized in this way can be traced back to 1735;

the branch of mathematics called Graph Theory originated with the Königsburg Bridge

problem. Königsburg was a thriving city located along the Pregel River in Prussia, and the

city was partitioned into four main land masses by the river. The four regions of the city

were connected by a series of seven bridges, and it was common for a citizen of Königsburg

to ask if they could go for a walk and cross each bridge exactly once. Eventually, Leonard

Euler, a famous and prolific mathematician, had the problem proposed to him.
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Figure 1

Euler, after some thought, concluded that there was no way to cross each bridge

exactly once. He solved the problem by determining how many times (8) the regions of

Königsburg would be visited if only crossing each bridge once, and he determined how

many times each individual region must be visited based off of the number of bridges that

lead to the given region. Each viewpoint led to a different number of regions visited, and

so it was not possible to cross each bridge exactly once. The regions and bridges of

Königsburg are shown in fig. 1 [8] .

After another 190 years or so, giving graph theory some time to develop and stand

on its own, a question that kicked off my thesis inquiry was posed. Frank Ramsey, a

young British mathematician, proved that graphs with large enough vertex sets guarantee

an induced subgraph that is either complete or independent.

One can phrase a special case of his conclusion as such. If nine people are gathered

into a room, Ramsey guaranteed that some four of the nine will all be familiar with each

other or some three of the nine will all be unfamiliar with each other. In our math

phrasing, each person translates to a vertex, and each type of relationship (familiar or

unfamiliar) corresponds to an edge, or lack there of.

In the thesis to follow, we consider these questions of Ramsey and focus on a

related question; instead of a complete or independent induced subgraph being guaranteed,
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can one guarantee a cycle subgraph or an independent induced subgraph? A special case

of a conclusion of this form can be phrased like so. If Pat, Julie, Maggie, Jake, Cole, Lou,

and Mary Ann are in a room together, we can guarantee that some four of the seven, say

Pat; Julie; Maggie; and Cole, will be familiar in the following way: Pat knows Julie, and

Julie knows Maggie, and Maggie knows Cole, who knows Pat. It is similar to being four

degrees of separation away from someone else who knows you. Otherwise, if this chain of

familiarity is not present, some three of the seven will all be unfamiliar with each other.

With this cute party anecdote in the back of our minds, let us dive into the

representations and language that describe these underlying graphs, subgraphs, and

relationships.
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CHAPTER 1

Language and Conventions

Let us begin by laying a foundation for effective and precise communication. The

language established in this chapter will be valuable in understanding the expression of

thought found within. With no intent of reinventing the wheel, we use definitions and

notation consistent with Brualdi [3].

We start the definitions section by first defining what a graph is, its components

(vertices and edges), and how these components may relate to each other.

Definition 1.1. A graph G is composed of two types of objects. It has a finite set

V = {x0, x1, x2, . . . , xk−1} of elements called vertices and a set E of pairs of distinct

vertices called edges. We denote the graph whose vertex set is V and whose edge set is E

by G = (V,E). When more than one graph is present, we denote the the vertex set of G as

V (G) and the edge set of G as E(G).

Definition 1.2. The number n of vertices in the set V is called the order of the graph G.

Definition 1.3. If α = {x, y} = {y, x} is an edge of graph E, then we say that α joins x

and y and that x and y are adjacent. We also say that x and α are incident, and y and

α are incident. Lastly, we refer to x and y as the vertices of the edge α.

Definition 1.4. The degree of vertex x in a graph G is the number deg(x) of edges that

are incident with x.

Definition 1.5. The total degree of a graph G is the sum of the degrees of all vertices of

G.

In our main results, we often consider a graph and look for some type of

substructure. If some substructure is present, then it is observable in a subset of vertices

and edges of the given graph. Next we define subgraph and induced subgraph; each gives
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us a different lens through which to view a given graph. An induced subgraph preserves

the most information from a given graph where a subgraph need not.

Definition 1.6. Let G = (V,E) be a graph. Let U be a subset of V and F a subset of E

such that the vertices of each edge in F belong to U. We call the graph S = (U,F ) a

subgraph of G. Notice, some edges of G might be omitted in the subgraph S.

Graph A Graph B Graph C

Figure 1.1

In fig. 1.1, B and C are subgraphs of A. Notice, B omits edges {x0, x3} and {x1, x4}.

Similarly, C omits edges {x0, x3}, {x1, x2}, and {x2, x3}.

Definition 1.7. Let G = (V,E) be a graph. Let S = (U,F ) be a subgraph of G such that

F consists of all edges of G that join vertices in U. We call S an induced subgraph of G.

Here no edges of G are omitted in the subgraph S.
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Graph A Graph B Graph C

Figure 1.2

In fig. 1.2, B and C are induced subgraphs of A. Notice, B includes all edges connecting

vertices x1, x3, and x4. Similarly, C includes all edges connecting vertices x1, x2, x3, and

x4. Additionally, B and C are subgraphs of A as all induced subgraphs are subgraphs.

To reiterate, subgraphs are important because they help us understand how the

larger graph is built so to speak. We often consider subgraphs with particular structures.

Before diving into specific definitions, let us informally describe some of these useful and

interesting graphs/structures.

We are interested in disjoint graphs. Vertices of these graphs can be separated into

groups such that there are no edges connecting vertices from different groups. We also

talk about independent graphs; vertices of these graphs have no edges between them.

Not only do we focus on graphs that have some sense of separateness, but we look

at graphs that have some notion of togetherness. In a walk, we describe a sequence of

edges that connect a beginning vertex to an ending vertex, and we further develop this

idea of a walk by defining a cycle. A cycle is exactly what you would expect; it is a

sequence of edges that connects a sequence of vertices, starting and ending at the same

vertex. Lastly, complete graphs are those in which all vertices are pairwise adjacent.

In this thesis, we analyze the underlying structure of graphs with respect to the

following types of subgraphs: disjoint, independent, cycle, and complete.
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Definition 1.8. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. We say G1 and G2 are

disjoint if V1 ∩ V2 = ∅ and for any vertex x1 ∈ V1 and any vertex x2 ∈ V2, no edge joins

x1 and x2.

Graph G1 Graph G2 Graph G

Figure 1.3

From fig. 1.3, we say G1 and G2 are disjoint. Often, we consider a pair of disjoint graphs

that are subgraphs of a larger graph. To illustrate this point, notice G has both G1 and

G2 for subgraphs.

Definition 1.9. Let G = (V,E) be a graph. A sequence of k edges of the form

{x0, x1}, {x1, x2}, . . . , {xk−1, xk}

is called a walk of length k, and this walk joins the vertices x0 and xk. We also denote the

walk by

x0 − x1 − x2 − · · · − xk.
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Graph A Graph B

Figure 1.4

In fig. 1.4, x0 − x1 − x2 − x3 − x4 − x5 is an example of a walk of length 5 found in A. As

well, x0 − x1 − x2 − x3 − x4 − x1 − x5 − x4 − x2 is an example of a walk of length 8 found

in B.

Definition 1.10. A cycle of order k is a graph whose edges form a walk with the

following properties.

1. The length of this walk is k.

2. If x0, x1, x2, . . . , xk−1 are the vertices of this walk with x0 and xk−1 being the

respective beginning and ending vertices, then x0 = xk−1.

3. Other than the beginning and ending vertices of this walk, every other vertex is

distinct.

Thus a cycle can be denoted by

x0 − x1 − x2 − · · · − xk−1 − x0.

We denote a cycle with k vertices by Ck.
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Graph A Graph B

Figure 1.5

In fig. 1.5, x0− x1− x2− x3− x4− x5− x0 is an example of a cycle of length 6 found in A.

In addition, x0 − x3 − x4 − x5 − x0 is an example a cycle of length 4 found in B. Notice

this cycle is an induced subgraph of B.

Convention 1.11. If x0, x1, . . . , xk−1 are the distinct vertices in a cycle, then xi−1 and xi

are adjacent for i ∈ {1, . . . , k − 1} as well as xk−1 and x0.

Figure 1.6: Cycle Ck

Observe in fig. 1.6, xi−1 and xi are adjacent for i ∈ {1, . . . , k − 1} as well as xk−1 and x0.
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The line break between x6 and xk−1 denotes the continuance of the cycle/walk from

vertex x6 to vertex xk−1.

Definition 1.12. A graph of order n is called independent, provided no two of its

vertices are adjacent. We denote such a graph by In.

I3 Graph B

Figure 1.7

In fig. 1.7, the left graph is an independent graph of order 3. In B, x0, x1, x2, and x3 are

the vertices of an independent graph of order 4. Notice this independent graph is an

induced subgraph of B.

Definition 1.13. A graph of order n is called complete, provided each pair of distinct

vertices is adjacent. Thus in a complete graph each vertex is adjacent to every other

vertex. A complete graph of order n is denoted by Kn.
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K3 K4 K5

Figure 1.8

In fig. 1.8, complete graphs of order 3, 4, and 5 are shown.

Example 1.14.

Graph A Graph B Graph C

Figure 1.9

Later on, we focus on cycles and complete graphs. Motivated by definition 1.17 and

definition 1.18, we look for cycles and complete graphs that are subgraphs and induced

subgraphs. In fig. 1.9, B is a cycle of order 5, and it is a subgraph of A. Alternatively, C is

a complete graph of order 5, and it is an induced subgraph of A.

Convention 1.15. There are two styles of graphs used in the figures throughout this
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paper, and their difference regards how we present our known information. In both styles,

solid colored edges denote two adjacent vertices. The styles are:

1. If a graph does not use dotted edges, then vertices not connected by an edge are

known to be not adjacent.

2. If a graph uses dotted edges, then the vertices connected by a dotted edge are not

adjacent, and if vertices are not connected by an edge, we make no assumptions

about their adjacency.

We employ the use of both styles in this paper because they help us communicate

in two types of ways. Style 1 is used in the scenario when we know all relationships

between each pair of vertices. Style 2 is used when we do not know about the adjacency of

each pair of vertices; this style is used more often when we know a property of some graph

and construct it more fully through deduction.

Definition 1.16. A graph GC is said to be the complement of graph G if:

1. V (GC) = V (G).

2. Two vertices of GC are adjacent if and only if they are not adjacent in G.

Definition 1.17 (Ramsey’s Theorem/numbers). Let k, l ∈ N such that k ≥ 2 and l ≥ 2.

Let r ∈ N be the least integer such that if G is a graph with |V (G)| = r, then G has an

induced subgraph Kk or an induced subgraph Il. We call r a Ramsey number and denote it

as a function of k and l by f(k, l) = r.

We recognize that we have not shown the existence of such a number r, but its

existence is well known [33]. We will prove there exists a finite upper bound on r in

theorem 2.5.

Ramsey proved both an infinite and finite version of his theorem. In this paper, we

focus on the finite version. In fact, since Ramsey’s proof of the existence of such a number

r in 1928, only nine Ramsey numbers have been discovered. The most recent discovery
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was from McKay and Radziszowski [31], proving f(4, 5) = 25. Even though many Ramsey

numbers are not explicitly known, progress has been made in providing upper and lower

bounds for many Ramsey numbers.

Instead of continuing to hunt down Ramsey numbers, we introduce a related

number which will be the main topic of this thesis.

Definition 1.18. Let k, l ∈ N such that k ≥ 2 and l ≥ 2. Let s ∈ N be the least integer

such that if G is a graph with |V (G)| = s, then G has a subgraph Ck or an induced

subgraph Il. We denote s as a function of k and l by h(k, l) = s.

We would like to point out that this related definition sets the stage for the main

theorems of this thesis. Moving forward, our main goal is to determine h(k, l). We are

successful in identifying the value of h(k, l) for l = 3 and k ≥ 3. We find a lower bound for

the value of h(k, 3) for k ≥ 3 by constructing a sequence of counterexamples. We show

that this lower bound is indeed an optimal lower bound by an induction proof. Thus, we

have determined the value for h(k, 3).

Besides focusing on h(k, l), we explore the relationships between the values of

h(k, l) and f(k, l). It is important for us to connect our Ramsey-like question, regarding

the value of h(k, l), to the original inquiry; as one can imagine, knowing the value of

f(k, l) or h(k, l) assists in finding the other. Let us formally begin our exploration.
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CHAPTER 2

Main Results

2.1 Initial Values of f(k, l)

Let us get our feet wet, so to speak, within Ramsey Theory. We will begin by finding the

explicit values of two Ramsey numbers: f(3, 3) and f(4, 3). These types of proofs require

two parts. The first part provides an optimal graph such that the required criteria is not

satisfied. The second part proves that the required criteria is satisfied for graphs with

exactly one more vertex than the previously provided graph.

Lemma 2.1. f(3, 3) > 5.

Proof. Let G be a graph as in fig. 2.1. Observe, G does not have an induced K3. (If G did,

a black triangle would be visible.)

Figure 2.1: f(3, 3) counterexample

Without loss of generality, let us consider x0. If x0 were a vertex of an I3, x2 and

x3 would have to be the remaining two vertices in the I3 as x0 is adjacent to x1 and x4.

However, x2 and x3 are adjacent; thus no vertex of G is a vertex of an I3.

Thus G to has neither an induced K3 nor I3. �

Lemma 2.2. f(3, 3) = 6.
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Proof. Let G be a graph such that |V (G)| = 6 and V (G) = {x0, . . . , x5}. Suppose G does

not have an induced I3. We will show G has an induced K3.

Let us consider x0.

Case 1: Suppose x0 is disjoint from S where S is an induced subgraph of G and

|V (S)| ≥ 3. Let S be such a graph. Since G does not have an induced I3 and x0 is disjoint

from S, every pair of vertices of S must be adjacent. Thus S is a complete graph of order

at least 3. Thus S has an induced K3; hence G has an induced K3.

Case 2: Suppose x0 is not adjacent with at most 2 vertices of G. Thus, x0 is

adjacent with at least 3 vertices of G. Let x0 be adjacent with the vertices of S where

|V (S)| ≥ 3 and S is an induced subgraph of G. Since G does not have an induced I3,

without loss of generality let x1, x2 ∈ V (S) be adjacent. Notice {x0, x1, x2} are the

vertices of an induced K3. Thus G has an induced K3.

Thus f(3, 3) ≤ 6. From lemma 2.1, we know f(3, 3) > 5. Using both of these facts,

we have f(3, 3) = 6. �

Lemma 2.3. f(3, 4) > 8.

Proof. Let G be a graph as in fig. 2.2. We provide an argument for why G has neither an

induced K3 nor an induced I4. First, observe G does not have an induced K3.

Figure 2.2: f(4, 3) counterexample

We will now show G does not have an induced I4. We shall consider vertices of
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different degree separately.

Case 1: Without loss of generality, let us consider vertex x0. By way of

contradiction, suppose x0 is a vertex of an I4 called I. Then x1, x4, x7 /∈ V (I). Since x2

and x3 are adjacent, no more than one of them is in V (I). Similarly, x5 and x6 are not

both in V (I). Since three more vertices are in I, either x5 and x6 are in V (I) or x1 and x2

are in V (I). �

Case 2: Without loss of generality, let us consider vertex x1. By way of

contradiction, suppose x1 is a vertex of an I4 called I. Then x0, x2 /∈ V (I). Since

x3 − x4 − x5 − x6 − x7 is a walk, no two consecutive vertices are in V (I). Thus,

x3, x5, x7 ∈ V (I). However, x3 and x7 are adjacent. �

Thus G does not have an induced I4. �

Lemma 2.4. f(3, 4) = 9.

Proof. Let G be a graph such that |V (G)| = 9 and V (G) = {x0, . . . , x8}. Suppose G does

not have an induced K3. We will show G has an induced I4.

Let us consider x0.

Case 1: Suppose x0 is not adjacent to at least six other vertices of G. By

lemma 2.2, within that subgraph, S, of at least six vertices, there exists an induced K3 or

an induced I3. Since G does not have an induced K3, S does not have an induced K3.

Thus, S has an induced I3. Since x0 is not adjacent to each vertex of S and S has an

induced I3, observe V (I3) ∪ {x0} are the vertices of an induced I4. Thus G has an induced

I4.

So x0 is not adjacent to at most five other vertices of G. This means that x0 is

adjacent to at least three other vertices of G.

Case 2: Suppose x0 is not adjacent to at most four vertices of G. Then, x0 is

adjacent to at least four vertices of G. Thus we can let S be an induced subgraph of G

such that x0 is adjacent to each vertex of S and |V (S)| ≥ 4. Since G does not have an

induced K3 and x0 is adjacent to each vertex of S, every pair of vertices of S must not be

adjacent. Thus S has an induced I4; hence G has an induced I4.
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Case 3: Suppose x0 is not adjacent to exactly five vertices of G. Since x0 is any

generic vertex of G, this is the case in which each vertex of G is not adjacent to exactly

five vertices of G. Thus each vertex of G is adjacent to exactly three vertices of G. Then,

the total degree of G is 27. However, for each edge, two is added to the total degree of the

graph (one to each of the degrees of its two vertices). Thus a graph with an odd total

degree does not exist. � �

We begin with proofs of some of the smallest Ramsey numbers because they help

us get a feeling for the type of arguments that will be made later on. As well, these two

proofs will be referenced again as they act as building blocks for proving structure in other

graphs.

2.2 The f(k, l) and h(k, l) Relationships

Now that we have shown that Ramsey’s Theorem holds for two (k, l) pairs, we will provide

a constructive proof of Ramsey’s Theorem that is true for all k, l ∈ N such that k, l ≥ 2.

As well, we will show our Ramsey-like number, h(k, l), also exists as a consequence of

Ramsey’s Theorem.

Theorem 2.5 (Ramsey’s Theorem). Let k, l ∈ N such that k, l ≥ 2. Then, f(k, l) <∞. In

other words, f(k, l) exists.

Proof. Let k, l ∈ N such that k, l ≥ 2. We will show f(k, l) exists by double induction on k

and l. Not only will we prove such a number exists, but we will provide an upper bound

for f(k, l) with k, l ≥ 3.

Base Case: We will show f(2, l) <∞ and f(k, 2) <∞ for k, l ∈ N \ {1}.

Let G be a graph with |V (G)| = l. Suppose G does not have an induced Il. We will

show G has an induced K2. Since G does not have an induced Il, there exists two vertices

of G that are adjacent. Thus G has an induced K2.

Thus f(2, l) ≤ l.

Similarly, f(k, 2) ≤ k.
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Let us proceed with our induction on k and l. Now, suppose k, l ≥ 2. As our

inductive hypothesis, let f(k, l + 1) <∞ and f(k + 1, l) <∞. We will show

f(k+ 1, l+ 1) <∞. Even better, we will establish f(k+ 1, l+ 1) ≤ f(k, l+ 1) + f(k+ 1, l).

Let G be a graph such that |V (G)| = f(k, l + 1) + f(k + 1, l). Fix x0 and x1 in

V (G). Let

V (S) = {y ∈ V (G) : y is adjacent to x0, y 6= x0, x1}

where S is the induced subgraph of G with this vertex set. Similarly, let

V (T ) = {z ∈ V (G) : z is not adjacent to x0, z 6= x0, x1}

where T is the induced subgraph of G with this vertex set.

If |V (S)| ≥ f(k, l + 1), then by the inductive hypothesis, S has an induced Kk or

an induced Il+1. If S has an induced Il+1, then we are finished as G would have an

induced Il+1. Suppose S has an induced Kk. Since x0 is adjacent to every vertex of S,

V (Kk) ∪ {x0} are the vertices of a Kk+1. Thus G would have an induced Kk+1. So,

suppose |V (S)| ≤ f(k, l + 1)− 1.

If |V (T )| ≥ f(k + 1, l), then by the inductive hypothesis, T has an induced Kk+1

or an induced Il. If T has an induced Kk+1, then we are finished as G would have an

induced Kk+1. Suppose T has an induced Il. Since x0 is not adjacent to every vertex of T,

V (Il) ∪ {x0} are the vertices of an Il+1. Thus G would have an induced Il+1. So, suppose

|V (T )| ≤ f(k + 1, l)− 1.

Now, notice

f(k, l + 1) + f(k + 1, l) = |V (G)|

= |V (S)|+ |V (T )|+ |{x0, x1}|

≤ [f(k, l + 1)− 1] + [f(k + 1, l)− 1] + 2

= f(k, l + 1) + f(k + 1, l).
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Thus we have |V (S)| = f(k, l + 1)− 1 and |V (T )| = f(k + 1, l)− 1 as shown in fig. 2.3.

Now, x0 can be adjacent or not adjacent with x1.

Figure 2.3: Note, |V (S)| = s, and |V (T )| = t.

Case 1: Let x1 be adjacent to x0. Consider the graph S′ where

V (S′) = V (S) ∪ {x1}. So, |V (S′)| = f(k, l + 1). Thus, by the inductive hypothesis, S′ has

an induced Kk or an induced Il+1. If S′ has an induced Il+1, then so does G. Suppose S′

has an induced Kk called K. Since all vertices of S′ are adjacent with x0, V (K) ∪ {x0} are

the vertices of an induced Kk+1. Hence G has an induced Kk+1.

Case 2: Let x1 not be adjacent to x0. Consider the graph T ′ where

V (T ′) = V (T ) ∪ {x1}. So, |V (T ′)| = f(k + 1, l). Thus, by the inductive hypothesis, T ′ has

an induced Kk+1 or an induced Il. If T ′ has an induced Kk+1, then so does G. Suppose T ′

has an induced Il called I. Since all vertices of T ′ are not adjacent to x0, V (I) ∪ {x0} are

the vertices of an induced Il+1. Hence G has an induced Il+1.

Thus we have shown that G is guaranteed to have an induced Kk+1 or an induced

Il+1. Hence, f(k + 1, l + 1) ≤ f(k, l + 1) + f(k + 1, l) <∞. �

Lemma 2.6. Let k, l ∈ N such that k, l ≥ 2. Then h(k, l) ≤ f(k, l).

Proof. Let k, l ∈ N. Let G be a graph such that |V (G)| = f(k, l). Then, G has an induced

Kk or an induced Il. If G has an induced Kk, then clearly G has a Ck subgraph.

Otherwise, G has an induced Il. Thus whenever |V (G)| = f(k, l), G is guaranteed to have
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a Ck subgraph or an induced Il.

Thus h(k, l) ≤ f(k, l). �

Corollary 2.7. Let k, l ∈ N such that k, l ≥ 2. Then, h(k, l) <∞.

Proof. Let k, l ∈ N such that k, l ≥ 2. From theorem 2.5, we know f(k, l) <∞. From

lemma 2.6, we know h(k, l) ≤ f(k, l). Using both of these facts, we have h(k, l) <∞. �

Now that we have proven that f(k, l) and h(k, l) exist for k, l ≥ 2, we can proceed

to talk about other characteristics that describe how the two functions are related.

This next relationship is a natural question, and even though we only speak about

f(k, l) here, we later ask this question for h(k, l). Since the complement of a complete

graph is an independent graph, we derive our next equality regarding f(k, l). This equality

becomes insightful to us in lemma 3.1 when trying to determine an unknown h(k, l) value.

Theorem 2.8. Let k, l ∈ N. Then f(k, l) = f(l, k).

Proof. Let k, l ∈ N. By Ramsey’s Theorem (theorem 2.5), f(k, l), f(l, k) <∞. Without

loss of generality, let f(k, l) ≤ f(l, k). We will show f(k, l) = f(l, k) by showing

f(l, k) ≤ f(k, l).

Let G be a graph such that |V (G)| = r = f(k, l). We will show G has an induced

Kl or an induced Ik. Consider GC where GC is the complement of G. Since

|V (GC)| = r = f(k, l), GC has an induced Kk or an induced Il.

Case 1: Suppose GC has an induced Kk. Then G has an induced Ik. Thus G has

an induced Kl or an induced Ik.

Case 2: Suppose GC has an induced Il. Then G has an induced Kl. Thus G has an

induced Kl or an induced Ik.

So, f(l, k) ≤ f(k, l). Thus, f(k, l) = f(l, k). �

Lemma 2.9. Let l ∈ N. Then h(3, l) = f(3, l).

Proof. Let l ∈ N. Let G be a graph. Observe that a complete graph of order 3 is the same

as a cycle of order 3. Thus, G is guaranteed to have an a C3 subgraph or an induced Il if

and only if G is guaranteed to have an induced K3 or induced Il. �
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2.3 Results of h(k, l)

In this section, we focus on Ramsey-like numbers. In our case, this means we looked for

the number of vertices required to guarantee a cycle subgraph of order k or an induced

complete graph of order l. We decompose the problem of finding Ramsey numbers into

smaller manageable pieces. Mathematicians and effective problem solvers use this strategy

often. Sometimes after solving enough pieces, a solution for the original problem appears.

Notice how we break the main claim of this section, h(k+ 1, 3) = 2k+ 1, into three

separate parts (theorem 2.10, lemma 2.11, and theorem 2.12).

Let us begin to inspect and understand the pieces of our main claim. We begin by

establishing a lower bound for the values h(k, l).

Theorem 2.10. Let k, l ∈ N. Then h(k + 1, l + 1) > kl.

Proof. We will prove that h(k + 1, l + 1) > kl by providing a counterexample. Let

K1,K2, . . . ,Kl be complete graphs of order k such that K1,K2, . . . ,Kl are pairwise

disjoint. Consider G =
l⋃

i=1
Ki. We will show that G does not have a Ck+1 subgraph nor an

induced Il+1.

Case 1: Suppose G has a Ck+1 subgraph. Since G =
l⋃

i=1
Ki and K1,K2, . . . ,Kl are

pairwise disjoint, V (Ck+1) ⊂ V (Ki) for some i such that 1 ≤ i ≤ l. Without loss of

generality, let V (Ck+1) ⊂ V (K1). Then k + 1 = |V (Ck+1)| ≤ |V (K1)| = k. �

Case 2: Suppose G has an induced Il+1. Since G =
l⋃

i=1
Ki and K1,K2, . . . ,Kl are

all complete, V (Il+1) includes at most one vertex from Ki for all i ≤ l. Thus |V (Il+1)| ≤ l.

However, |V (Il+1)| = l + 1. �

Thus G has neither a Ck+1 subgraph nor an induced Il+1. �

In fig. 2.4 and ??, we show what the graph G from theorem 2.10 would look like

for two different k, l pairs.
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Figure 2.4: h(4, 3) counterexample

Figure 2.5: h(6, 4) counterexample

If an additional vertex is invited into a cycle of length k, then a new cycle of

length k + 1 is formed. This fact is used frequently in theorem 2.12.

Lemma 2.11 (Adjacency Lemma). Let x0 and x1 be two adjacent vertices of a Ck.

Suppose x0 and x1 are both adjacent to some vertex y /∈ V (Ck). Then,

x0 − y − x1 − x2 − · · · − xk−1 − x0

forms a Ck+1.

The proof of lemma 2.11 is omitted; the lemma is clear by a simple observation.

We are about to prove the main result of this thesis; we determine a whole class of

h(k, l) values (when l = 3). The main tactics used in this proof can be found in lemma 2.6
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and lemma 2.11. After the base case is provided, we take a somewhat constructive

approach to proving the induction.

Theorem 2.12. Let k ∈ N such that k ≥ 3. Then h(k + 1, 3) = 2k + 1.

Proof. Let k ∈ N. We will prove h(k + 1, 3) = 2k + 1 for k ≥ 3 by induction on k.

Base Case: Let k = 3. We will show h(4, 3) = 7. Let G be a graph such that

|V (G)| = 7. Suppose that G does not have an induced I3. We will show G has a C4

subgraph.

By lemma 2.2, we know that f(3, 3) = 6. Since |V (G)| = 7, h(3, 3) = f(3, 3) = 6,

and G does not have an induced I3, G has a C3 subgraph. Let V (C3) = {x0, x1, x2}. Let

H be the induced subgraph of G such that V (H) = V (G) \ V (C3). Notice

|V (H)| = 7− 3 = 4. Let V (H) = {y0, y1, y2, y3}.

Subcase 1 Subcase 2

Figure 2.6

Subcase 1: Suppose some element in V (C3), namely x0, is not adjacent to any

vertex in V (H). So, x0 is not adjacent to yi for i ∈ {0, 1, 2, 3} (see fig. 2.6 Subcase 1).

Since G does not have an induced I3, for i 6= j with i, j ∈ {0, 1, 2, 3}, yi and yj are

adjacent in G and thus in H. Thus, subgraph H is a complete graph of order 4. Thus, H

has a C4 subgraph. Hence, G has a C4 subgraph.
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Subcase 2: Suppose that every element in V (C3) is adjacent to some element in

V (H). By lemma 2.11, we suppose that no two adjacent vertices of C3 are adjacent to the

same vertex of H.

So, let x0 be adjacent to y0 and x1 be adjacent to y1 (see fig. 2.6 Subcase 2). Note

in fig. 2.6 Subcase 2, we omit the edge that joins x2 with some vertex of H as it does not

aid in the proof of the theorem. Notice, x2 is neither adjacent to y0 nor y1 by lemma 2.11.

Since x2 is not adjacent with y0 nor y1 and G does not have an induced I3, y0 and y1 are

adjacent. Observe, {x0, x1, y1, y0} are the vertices of a C4. Thus G has a C4 subgraph.

Thus h(4, 3) ≤ 7. From theorem 2.10, we know h(4, 3) > 6. Using both of these

facts, we have h(4, 3) = 7.

Let us proceed with our induction on k. Suppose that h(k + 1, 3) = 2k + 1. We will

show that h(k + 2, 3) = h((k + 1) + 1, 3) = 2(k + 1) + 1 = 2k + 3. Let G be a graph such

that |V (G)| = 2k + 3. Suppose that G does not have an induced I3. We will show G has a

Ck+2 subgraph.

Since |V (G)| = 2k + 3, h(k + 1, 3) = 2k + 1, and G does not have an induced I3, G

has a Ck+1 subgraph. Let V (Ck+1) = {x0, x1, . . . , xk}. Let H be the induced subgraph of

G such that V (H) = V (G) \ V (Ck+1). Notice |V (H)| = k + 2. Let

V (H) = {y0, y1, . . . , yk+1}.

Subcase 1:

Figure 2.7
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Suppose some element in V (Ck+1), namely x0, is not adjacent to any vertex in

V (H). So, x0 is not adjacent to yi for i ∈ {0, . . . , k + 1} (see fig. 2.7). Since G does not

have an induced I3, for i 6= j with i, j ∈ {0, . . . , k + 1}, yi and yj are adjacent in G and

thus in H. Thus, subgraph H is a complete graph of order k + 2. Thus, H has a Ck+2

subgraph. Hence, G has a Ck+2 subgraph.

Subcase 2: Suppose that every element in V (Ck+1) is adjacent to some element in

V (H). By lemma 2.11, we suppose that no two adjacent vertices of a Ck+1, disjoint from

H, are adjacent to the same vertex of H. Let x0 and x1 be adjacent to y0 and y1,

respectively.

Note in fig. 2.8; fig. 2.9; fig. 2.10; and fig. 2.11, we omit the edges that join xi for

i ∈ {3, 4, . . . , k} with some vertex of H as they do not aid in the proof of the theorem.

Also, we later discern the edge that joins x2 with its vertex in V (H) as shown in fig. 2.10.

Since no two adjacent vertices of

x0 − x1 − x2 − · · · − xk − x0 (2.1)

are adjacent to the same vertex in V (H), x0 and y1 are not adjacent. Similarly, x2 and y1

are not adjacent (see fig. 2.8 (a)).

(a) (b)

Figure 2.8
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Since x0 and x2 are not adjacent to y1 and G does not have an induced I3, x0 and x2 are

adjacent. Using no two adjacent vertices of a Ck+1 are adjacent to the same vertex in

V (H), by a similar argument, xk and x1 are adjacent (see fig. 2.8 (b)).

Notice,

x0 − x2 − x3 − x4 − · · · − xk−1 − xk − x1 − x0 (2.2)

is a different Ck+1 than the one in eq. (2.1) that is also disjoint from H.

(a) Cycle of equation (2.1) (b) Cycle of equation (2.2)

Figure 2.9

In fig. 2.9 (a) and (b), we draw attention to the two unique cycles of equation 2.1 and

equation 2.2, respectively. In the Ck+1 of equation 2.2, x0 and x2 are adjacent. Thus, x2 is

not adjacent to y0 (see fig. 2.10 (a)). Since x2 is adjacent to both x0 and x1, x2 is not

adjacent to y0 nor y1 by lemma 2.11. Let x2 be adjacent to y2 as in fig. 2.10 (b).

Now that x2 is not adjacent to y0 nor y1, since G does not have an induced I3, y0

and y1 are adjacent (see fig. 2.10 (b)).
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(a) (b)

Figure 2.10

Again, since no two adjacent vertices of a Ck+1 are adjacent to the same vertex in V (H),

x1 and y2 are not adjacent. Similarly, x3 and y2 are not adjacent (see fig. 2.11 (a)). Since

G does not have an induced I3, x1 and x3 are adjacent (see fig. 2.11 (b)).

(a) (b)

Figure 2.11

Notice,

x0 − y0 − y1 − x1 − x3 − x4 − · · · − xk−1 − xk − x0 (2.3)

is a Ck+2. The cycle mentioned in equation 2.3 is shown in fig. 2.12.
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Figure 2.12

Thus G has a Ck+2 subgraph.

Thus h(k + 2, 3) ≤ 2k + 3. From theorem 2.10, we know

h(k+ 2, 3) > (k+ 1) · 2 = 2k+ 2. Using both of these facts, we have h(k+ 2, 3) = 2k+ 3. �

We already know by lemma 2.6, h(k, 3) ≤ f(k, 3), but how much more is f(k, 3)

than h(k, 3)? Now that we know the value for h(k, 3) for k ≥ 3, we have more information

to answer such a question as how h(k, l) and f(k, l) are related. Perhaps, by taking h(k, 3)

up one notch to h(k + 1, 3), requiring more, we can get a closer lower bound for f(k, 3).

We work to uncover this relationship by proving theorem 2.13.

Theorem 2.13. Let k ∈ N such that k ≥ 4. Then, f(k, 3) > 2k.

Proof. Let k ∈ N such that k ≥ 4. We shall proceed by induction on k.

Base Case: Let k = 4. It is known that f(4, 3) = 9. Thus, f(4, 3) = 9 > 8 = 2(4).

Let f(k, 3) > 2k. We will show f(k + 1, 3) > 2(k + 1). Since f(k, 3) > 2k, let G be

a graph such that |V (G)| = 2k and G fails to have both an induced Kk and an induced I3.

Let V (G) = {x0, x1, . . . , x2k−1}. Let G′ be a graph such that G is an induced subgraph of

G′ and V (G′) = V (G) ∪ {y0, y1} such that y0 and y1 are not adjacent and yi and xj are

adjacent for all i ∈ {0, 1, . . . , 2k − 1} and j ∈ {0, 1}.

Notice, y0 and y1 do not participate in an I3 subgraph of G′. Since y0 and y1 do

not participate in an I3 subgraph of G′ and G does not have an induced I3, G
′ does not
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have an induced I3.

Using a contradiction argument, we will now show that G′ does not have an

induced Kk+1. Suppose G′ has an induced Kk+1. Since y0 and y1 are not adjacent, the

Kk+1 of G′ does not contain both y0 and y1. However, since G does not have an induced

Kk, y0 or y1 must be in the Kk+1.

Without loss of generality, suppose y0 ∈ V (Kk+1). Then, V (Kk+1) \ {y0} are the

vertices of a Kk. Notice V (Kk+1) \ {y0} ⊂ V (G). Thus G has an induced Kk. �

So G′ fails to have an induced Kk+1. Hence, G′ is a graph such that

|V (G′)| = 2k + 2 and G′ fails to have an induced Kk+1 and an induced I3.

Thus f(k + 1, 3) > 2(k + 1). �

Corollary 2.14. Let k ∈ N such that k ≥ 4. Then h(k + 1, 3) ≤ f(k, 3).

Proof. Let k ∈ N such that k ≥ 4. By theorem 2.13, f(k, 3) > 2k. So, f(k, 3) ≥ 2k + 1. By

theorem 2.12, h(k + 1, 3) = 2k + 1 ≤ f(k, 3). �
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CHAPTER 3

Forward

3.1 Additional Work

Now that we have found the value of h(k, 3) for k ≥ 3, we attempt to extend our

knowledge and find values for h(k, l) for l ≥ 4. We start this discussion by first realizing

that h(k, l) does not maintain a property that f(k, l) holds. Specifically, h(k, l) 6= h(l, k) in

general.

Lemma 3.1. There exists k, l ∈ N such that h(k, l) 6= h(l, k).

Proof. Consider h(4, 3) and h(3, 4). By theorem 2.12, we know h(4, 3) = 7. By lemma 2.9

and lemma 2.4, we know h(3, 4) = f(3, 4) = 9. Thus,

h(4, 3) = 7 6= 9 = h(3, 4).

�

In pursuit of determining new h(k, l) values, we conclude this thesis with a

counterexample for h(3, 5). Thus, we have found a lower bound for h(3, 5). It is also worth

mentioning by lemma 2.9, this counterexample is also a counterexample for f(3, 5).

Example 3.2. The graph in fig. 3.1 below is an example of a graph that does not have a

C3 subgraph nor an induced I5.
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Figure 3.1: h(3, 5), f(3, 5) counterexample

Proof. Let G be the graph as in fig. 3.1. We first characterize the graph G. Then we prove

that G fails to have a C3 subgraph. Finally, we will show that G does not have an induced

I5.

If arithmetic is done in Z13, xi is adjacent to xi−1, xi+1, xi−5, and xi+5 for

i ∈ {0, 1, . . . , 12}.

By way of contradiction, suppose G has a cycle subgraph of order 3 called C3.

Without loss of generality, let x0 ∈ V (C3).

Let xj , xk ∈ V (C3) for some j, k ∈ {1, 2, . . . , 12} with j, k 6= 0. Since x0 ∈ C3, x0 is

adjacent to xj and xk. Similarly, xj is adjacent to xk. Since xj and xk are adjacent to x0,

j, k ∈ {1, 5, 8, 12}. However, notice x1, x5, x8, and x12 are all pairwise disjoint. Thus xj

and xk are not adjacent. �

Thus G does not have a cycle subgraph of order 3.

We now prove that G does not have an induced I5. By way of contradiction,

suppose G has an induced I5. Since each vertex is indistinguishable, without loss of

generality, let x0 ∈ I5.

Then, x1, x5, x8, x12 /∈ I5. We partition the remaining vertices as such: {x2, x3, x4},

{x6, x7}, and {x9, x10, x11}. Since we have four more points in our I5, and there are three

groups in our partition, by the pigeonhole principle, at least two vertices of the I5 will
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come from the same set of vertices.

Two vertices of the I5 cannot be elements of {x6, x7} as x6 and x7 are adjacent.

Since {x2, x3, x4} and {x9, x10, x11} are indistinguishable, without loss of

generality, suppose at least two vertices of the I5 are elements of {x2, x3, x4}. Notice there

is only one way to select at least two vertices from {x2, x3, x4} where the selected vertices

are pairwise disjoint. Thus, x2, x4 ∈ I5. Hence x3, x7, x9, x10 /∈ I5.

Thus the only other vertices available for the I5 are x6 and x11. So x6, x11 ∈ I5.

However, x6 and x11 are adjacent. �

Thus G does not have an induced I5.

We have shown that G does not have a C3 subgraph nor an induced I5. Thus,

f(3, 5) ≥ 14.

�

What is in store next? In the next section,we aim to give a brief summary of

where the field of Ramsey Theory currently is, and what questions are still open.

3.2 Future Work

Now, we were not the first ones to pose Ramsey-like questions, and we certainly will not

be the last. Our main result was actually first found in 1971 [ChaS]. When it comes to the

function h(k, l), many more values are known. In fact, if we were to make a new discovery,

we would have to uncover h(k, 8) for k ≥ 10. This value is conjectured to be 7k − 6. A

table of known h(k, l) values can be found in table 3.1 [30].

Some notes on table 3.1 in regards to keeping consistent with Radziszowski [30]:

citations with ”-” describe joint credit; the first reference is for the lower bound and the

second the upper bound. As well, ”/” denotes joint credit. Some papers contain results

found with the help of computer algorithms. A list of papers that use some computers

where results are easily verifiable with some computations are: [9],[10],[11],[26],[32]. A list

of papers where cpu intensive algorithms have to be used to verify or replicate the results

are: [1],[12], [16], [29].
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Table 3.1: Known h(k, l) values denoted f(Ck,Kl)

C3 C4 C5 C6 C7 C8 C9 . . . Ck for k ≥ l

K3 6 7 9 11 13 15 17 . . . 2k − 1

[15]-[4] [5] . . . . . . [5]

K4 9 10 13 16 19 22 25 . . . 3k − 2

[15] [6] [18]/[25] [23] [40] . . . . . . [40]

K5 14 14 17 21 25 29 33 . . . 4k − 3

[15] [7] [17]/[25] [23] [41] [2] . . . . . . [2]

K6 18 18 21 26 31 36 41 . . . 5k − 4

[27] [9]-[34] [24] [35] . . . . . . [35]

K7 23 22 25 31 37 43 49 . . . 6k − 5

[26]-[14] [32]-[22] [36] [37] [37] [21]/[39] [39] . . . [39]

K8 28 26 29-33 36 43 50 57 . . . 7k − 6

[16]-[29] [32] [20] [38] [39] [19]/[42] [28] . . . conj.

K9 36 30 . . . 8k − 7

[26]-[16] [32]-[1] . . . conj.

K10 40-42 36 . . . 9k − 8

[10]-[12] [1] . . . conj.

K11 47-50 39-44 . . . 10k − 9

[11]-[12] [1] . . . conj.

Interestingly enough, there are other Ramsey-like questions that can also be

explored; we focused on cycles, but we could have looked at almost complete graphs

versus almost complete graphs, cycles versus cycles, cycles versus stars, cycles versus

wheels, cycles versus books, etc. Note that almost complete graphs, stars, and wheels are

all well defined graphs with examples shown in fig. 3.2; fig. 3.3; and fig. 3.4, respectively.
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(a) K6 − e where e = {x0, x3} (b) K6 − e where e = {x4, x5}

Figure 3.2

(a) Star of order 4 (b) Star of order 6

Figure 3.3
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(a) Wheel of order 4 (b) Wheel of order 6

Figure 3.4

Besides looking into other types of induced subgraphs with different structure, we

can also look into multicolor Ramsey numbers. In this thesis, edges of graphs either

existed or did not exist; hence, all proofs worked with Ramsey numbers of two colors. For

reference, twenty three Ramsey numbers are known for the three color case, and no exact

Ramsey numbers are known for the four color case. Then, again, we could look into

multicolor Ramsey-like numbers that correspond to guaranteeing cycles, stars, wheels, etc.

If looking to learn more about Ramsey’s Theorem and its related questions, a

great place to start would be the Mathematical Review completed by Stanis law P.

Radziszowski [30]. Radziszowski has cited over 700 references. From the review and cited

papers, in depth knowledge on the topic can be collected.

If looking to get fairly young students interested in the subject, I recommend

looking at Ramsey Theory [13]. It introduces the topic in an interesting and friendly way

with plenty of visuals for the reader to investigate.
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