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ABSTRACT 

The purpose of this study was twofold: 1). to evaluate the metabolic responses to 

varying volume load (VL), manipulated through relative training intensity and 2). to 

evaluate the metabolic response to training via direct and indirect methods to assess the 

application potential of non-invasive methods. Recreationally trained male weight lifters 

(n = 11) volunteered to participate in this resistance training (RT) study. During three 

separate testing sessions, participants completed three sets of repetitions of the barbell 

bicep curl exercise to technical failure with short inter-set rest intervals (60 seconds). 

Participants were randomly assigned one of three training intensities immediately prior to 

each testing session: low-load (30% 1RM), moderate-load (60% 1RM), or high-load 

(90% 1RM). Blood lactate was measured at baseline (Pre), immediately post exercise 

(Post), five minutes post exercise (Post5), and at 15 minutes post exercise (Post15). 

Metabolic markers VO2, VCO2, and RER were monitored at all times during each 

session. Low-load training resulted in significantly greater accumulated VL compared to 

moderate and high-load training. However, no significant differences were observed in 

blood lactate, VO2, or VCO2. RER values significantly favored the 30% condition over 

the 60% and the 90% between Post1 and Post2 and favored the 30% condition over the 

90% between Post2 and Post3. Observed RER values were similar during the 30% and 

60% conditions at all time points other than the period between Post1 and Post2. These 

results indicate that blood lactate measurements may underestimate the total exercise-

associated accumulation of metabolites, and that non-invasive, indirect markers may be 

more useful in assessing the metabolic training response. Additionally, these findings 



 

suggest that VL may not exert significant influence over lactate accumulation. Lastly, 

these findings indicate that moderate intensities may induce similar metabolic responses 

to low intensity training when exercise is performed for multiple sets of repetitions.   
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CHAPTER 1 

INTRODUCTION 

Rationale  

Increased skeletal muscle cross-sectional area (CSA) is highly correlated with 

increased muscular strength (Haff & Triplett, 2015; Maughan, Watson, & Weir, 1983). 

This relationship is one of the primary reasons why increasing or maintaining lean body 

mass has become a common training goal amongst elite athletes and recreational weight 

lifters alike. The ability to generate and tolerate high level forces enhances athletic 

abilities and performance during training and competition (Anderson, Triplett-Mcbride, 

Foster, Doberstein, & Brice, 2003). In addition to its role in promoting increases in 

skeletal muscle CSA and muscular force production, traditional resistance training (RT) 

carries the added benefit of reducing the risk of sports-related injuries amongst athletes 

(Faigenbaum & Myer, 2010; Heidt, Sweeterman, Carlonas, Traub, & Tekulve, 2000).  

As skeletal muscle hypertrophy has been identified as the primary process 

through which humans increase their volume and CSA of skeletal muscle tissue (, 2010, 

2016), hypertrophy has become essential in developing individual health and fitness. 

Considering the significance that the accretion of lean body mass has in athletic, 

recreational, and rehabilitation settings, the immense amount of research surrounding 

hypertrophy is understandable. Although researchers have tirelessly investigated the 

hypertrophic process and its mediators, there is much about hypertrophy which remains 

unclear.  
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Currently, three primary hypertrophic mechanisms have been identified 

(Schoenfeld, 2010, 2016). These mechanisms include muscular damage, metabolic stress, 

and mechanical tension. Many studies have been conducted with the intention of 

providing further insight into the interrelationship between these mechanisms and 

training adaptations, however, the potential contribution of each mechanism towards the 

growth and development of skeletal muscle fibers remains unclear. Without a clear 

understanding of the hypertrophic role of each individual mechanism, best practice 

methods for maximally influencing muscular growth remain unknown.  

More recently, in vitro and in vivo studies (Oishi et al., 2015; Tsukamoto et al., 

2018) have demonstrated the hypertrophic potential of metabolic stress by observing the 

effects of lactate administration. The observations made in these studies support a strong 

role for metabolic stress in accelerating the differentiation of muscle precursor cells and 

the growth of myofibers. Although the accumulation of metabolites during exercise was 

believed to promote increased intramuscular protein accretion prior to the completion of 

these studies, the methodology employed in these contemporary investigations allowed 

the effects of exercise-induced metabolic stress (EIMS) to be observed in the absence of 

additional mechanisms of hypertrophy. As hypertrophic mechanisms generally occur in 

tandem with one another during RT (Schoenfeld, 2016), the process of isolating a 

singular hypertrophic mechanism has been a consistent methodological problem which 

has proven difficult to solve. However, the methodology employed in these hypertrophic 

investigations (Oishi et al., 2015; Tsukamoto et al., 2018) has seemingly provided a 
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means to isolate metabolic stress allowing observations to made which reflect the net 

anabolic effects of this singular mechanism of hypertrophy. 

Considering the anabolic effects that the accumulation of blood lactate has 

demonstrated (Oishi et al., 2015; Tsukamoto et al., 2018), additional studies should be 

conducted to identify best practice methods for maximizing the metabolic response to RT 

through the manipulation of specific training variables. Many studies have been 

conducted which have examined the metabolic response following the manipulation of 

training variables including training volume (MacDougall et al., 1999; Schoenfeld, 2013; 

2016), inter-set rest intervals (Abdessemed, Duche, Hautier, Poumarat, & Bedu, 1999; 

Henselmans & Schoenfeld, 2014; Kraemer et al., 1990; Schoenfeld, 2013; 2016), and 

training tempo (Martins-Costa et al., 2016; Schoenfeld, 2016; Schoenfeld, Ogborn & 

Krieger, 2015), however, little information is available regarding the influence of training 

volume load (VL) on EIMS. Future studies should consider manipulating training VL 

when attempting to induce metabolic stress as VL accounts for both the volume of 

physical work performed and the intensity at which this work is performed. This 

information may be highly beneficial in identifying the optimal training intensity for 

inducing metabolic stress. 

Additionally, currently used direct methods of measuring metabolic accumulation 

during exercise, including blood sampling and muscle biopsies, pose potential health and 

methodological concerns. Due to these concerns, future investigations should examine 

the viability and accuracy of indirect methods of assessing the exercise-associated 

accumulation of metabolites. Indirect methods of measuring the metabolic response to 
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exercise, if found to be viable and accurate, will assist in the development of best practice 

methods for inducing metabolic stress by providing reliable values for metabolite 

accumulation reflecting the effectiveness of exercise protocols in inducing a metabolic 

response. 

Practical Significance 

Identifying individualized responses to RT carries considerable practical 

application potential for future researchers. Previous investigations have solidified the 

prominent role that exercise-induced metabolic stress (EIMS) has in the facilitation of 

muscular growth, primarily through processes such as cellular swelling, the enhanced 

release of anabolic hormones, and decreased recruitment thresholds of larger motor units 

(Gentil, Oliveira, & Bottaro, 2006; Green, Hughson, Orr, & Ranney, 1983; Reeves et al., 

2006; Schoenfeld, 2013; 2016; Takarada, Nakamura, et al., 2000). However, there is 

currently a lack of knowledge regarding inducing EIMS. A direct relationship appears to 

exist between training volume and EIMS (MacDougall et al., 1999; Schoenfeld, 2013; 

2016), however, in these studies, training volume is typically manipulated through the 

completion of additional sets of exercise. This methodology has neglected to take into 

account the differing accumulated volume load when RT is performed at varying 

intensities for an equal number of sets. Such information would assist researchers in 

determining the appropriate exercise intensity to induce varying degrees of metabolic 

stress.  

Current methods of measuring metabolite accumulation involve invasive 

techniques such as blood draws, finger pricks, and muscle biopsies (Tesch, Daniels, & 
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Sharp, 1982; Shanely et al., 2014). These methods are potentially disruptive to 

experimental procedures as they require additional time to complete and may hinder 

exercise protocols involving short or no inter-set rest intervals. Methods of directly 

measuring metabolic stress also pose a potential risk to the health and comfort of 

participants. Thus, indirect, non-invasive methods of measuring the exercise-associated 

accumulation of metabolites would be beneficial to researchers who seek to observe the 

metabolic response to exercise. These indirect methods may include monitoring changes 

in VO2, VCO2, and RER which occurring during and immediately post exercise, as these 

changes may reflected alterations in metabolic activity which may influence metabolite 

accumulation. 

Additionally, due to the known anabolic effects associated with the accumulation 

of metabolites (Reeves et al., 2006; Schoenfeld, 2013; 2016; Takarada, Nakamura, et al., 

2000; Takarada, Takazawa, et al., 2000), a deeper understanding of the acute metabolic 

response to RT will be an asset to strength and conditioning, health and fitness, and 

rehabilitation professionals who seek to increase, maintain, or regain skeletal muscle 

CSA within athletes, clients, and patients. Millions of recreational weight lifters who seek 

to optimize the hypertrophic adaptations of their training regimens also stand to benefit 

from knowing the optimal working intensity at which acute metabolic stress is 

maximized.  

Problem Statement  

Currently, there is substantial information available regarding the metabolic 

responses resulting from the manipulation of various training variables. However, there is 



6 

 

a lack of information available surrounding the relationship between metabolic 

accumulation and RT VL. As VL accounts for both the volume of physical work 

performed during a specified period of time and the intensity at which this work is 

performed, examining the relationship between VL and the metabolic response to training 

may assist researchers and practitioners in selecting appropriate working intensities to 

induce substantial metabolic stress which may promote hypertrophic adaptations in 

skeletal muscle (Oishi et al., 2015; Tsukamoto et al., 2018). 

In addition to the need for an increase in the available information regarding the 

metabolic response to the manipulation of VL, it is also necessary to identify additional 

methods for accurately assessing the metabolic response to training. Currently, studies 

which evaluate the metabolic response to exercise use direct methods for measuring the 

accumulation of metabolites. The two direct methods typically utilized include the 

retrieval of muscle biopsy samples and blood draws. Muscle biopsies and blood draws 

are both invasive procedures which create a risk for infection and subject participants to a 

certain degree of discomfort. Additionally, these two procedures can be disruptive to 

experimental procedures which involve short inter-set rest intervals or the time sensitive 

collection of biological samples. For these reasons, identifying indirect methods of 

evaluating the metabolic response to exercise, such as VO2, VCO2, and RER, would be 

highly beneficial to future investigations involving metabolic stress. 

This investigation will expand the current knowledge regarding the relationship 

between training VL and one of the known primary mechanisms of hypertrophy, 

exercise-induced metabolic stress (EIMS), by providing insight into the expected 
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accumulation of blood lactate following traditional resistance exercise performed at 

varying intensities. Additionally, this study will evaluate metabolic metrics (VO2, VCO2, 

and RER) with the intention of identifying a potentially less invasive, indirect marker of 

exercise-associated metabolic stress. The results of this study will provide a foundation 

from which future researchers can develop evidence-based methods for optimizing 

exercise-associated metabolic stress.   

Delimitations 

1. Due to safety considerations, the primary investigator made the decision to 

include only those participants who, at the start of the study, were not currently 

suffering from any known musculoskeletal injuries.  

2. Researchers decided to exclude all participants who indicated that they had in the 

past year, or were currently, supplementing with any dietary supplements in 

which creatine monohydrate or hydrochloride were a primary ingredient. 

Limitations 

1. Limitations of any exercise-based study will include the subjective effort of 

participants. Without the enticement of personal gain, it is possible that 

participants will quit prematurely during testing procedures or during initial 

strength testing, in response to exercise-associated discomfort.  

2. Participants of the proposed study were required to provide researchers with an 

estimated training history by completing a training history questionnaire. There is 

always an inherent risk of self-report bias associated with the use of 

questionnaires.  
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Definitions 

1. Exercise-induced Muscular Damage (EMID): Exercise-induced muscular damage 

refers to the disruption of the ultrastructural content of skeletal muscle fibers 

following the execution of resistance exercises.  

2.  One Repetition Maximum (1RM): The greatest absolute amount of resistance 

that an individual can lift for a single repetition through a complete range of 

motion for a specified exercise. 

3. Exercise-induced Metabolic Stress (EIMS): The accumulation of various 

metabolic byproducts, most notably lactate, following the execution of exercise 

which relies heavily on anaerobic metabolism. 

4. Muscular or technical failure: Failure will refer to an inability to complete another 

repetition of a specified exercise through the complete range of motion. 

5. Inter-set rest interval: The total time which elapses between successive sets of 

exercise during a single training session. 

6. Intra-set work duration: The total time which elapses during a single set of 

resistance training exercise. 
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CHAPTER 2 

LITERATURE REVIEW 

Skeletal Muscle Hypertrophy 

The addition of lean muscle mass has been a common goal for athletes, 

recreational weight lifters, and rehabilitation patients for centuries. The process of 

growing skeletal muscle involves a complex and intricate relationship between human 

physiology and the external environment. The exact individual factors, physiological 

processes, mechanisms, and pathways which facilitate the growth of myofibers are still 

not entirely understood after being the focus of thousands of scientific investigations. 

However, these investigations have revealed much about the physiological phenomenon 

referred to as hypertrophy, a term used to describe an increase in the size of muscle tissue 

(Schoenfeld, 2016). Skeletal muscle hypertrophy involves an increase in the diameter of 

each myofiber, ultimately causing an increase in whole muscle cross-sectional area 

(CSA) (Schoenfeld, 2010) or whole muscle volume (Haff & Triplett, 2015). In humans, it 

is believed that hypertrophy occurs via two distinct processes: myofibrillar hypertrophy 

and sarcoplasmic hypertrophy (Schoenfeld, 2010). 

Myofibrillar Hypertrophy 

 When human skeletal muscle fibers experience a sufficient overloading stimulus, 

a series of physiological events are initiated. These events have many possible outcomes, 

one of which is the growth of skeletal muscle fibers (Schoenfeld, 2010). The growth of 

muscle fibers most often involves the enlargement and addition of new intramuscular 

contractile elements, specifically the contractile proteins actin and myosin. The growth of 
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current myofilaments; and the acquisition of new contractile proteins; ultimately forces 

existing sarcomeres to expand, and eventually creates a need for the formation of 

additional sarcomeres. As sarcomeres are enlarged, and new sarcomeres are established, 

each affected myofiber is compelled to expand, rather than risk rupturing. Most typically, 

a mechanically overloading stimulus, commonly induced via traditional RT, facilitates 

the acquisition of sarcomeres in parallel, rather than in a series orientation (Haff & 

Triplett, 2015; Schoenfeld, 2010; 2016; Toigo & Boutellier, 2006). The inclusion of new 

sarcomeres in parallel increases the diameter of each myofiber, which ultimately results 

in an increase in the overall size of the entire associated muscle belly. As fibers undergo 

myocellular expansion, their enlargement creates a need for the extracellular matrix 

surrounding each muscle fiber to expand as well. This physiological phenomenon is 

referred to interchangeably as both compensatory hypertrophy and myofibrillar 

hypertrophy, and it is a training adaptation sought by hundreds of millions of individuals 

for competitive, recreational, and health benefits.  

Sarcoplasmic Hypertrophy 

In contrast, sarcoplasmic hypertrophy, a process in which myocellular expansion 

is believed to result from the accumulation of non-contractile elements and fluid within 

the muscle cell, has been presented as an alternative hypothesis to myofibrillar 

hypertrophy (Schoenfeld, 2012; 2016; Zatsiorsky, 1992). It is speculated that muscular 

growth resulting from sarcoplasmic hypertrophy is accompanied by little to no chronic 

accretion of contractile elements or improvements in maximal voluntary contraction 

(MVC) (Cassano et al., 2009; Fisher, Steele, & Smith, 2013; Schoenfeld, 2010; 2016; 
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2019; Zatsiorsky, 1992). However, sarcoplasmic hypertrophy has been shown to increase 

cellular swelling (Schoenfeld, 2010; 2016), a phenomenon which may have positive 

implications on muscle protein synthesis (MPS) rates, and may ultimately contribute to 

the addition of contractile elements within the muscle cell (Schoenfeld & Contreras, 

2014). The phenomenon of cellular swelling will be discussed in greater detail in a 

subsequent section of this review.  

The results of a recent RT investigation (Schoenfeld et al., 2019), appear to 

demonstrate the development of skeletal muscle tissue via sarcoplasmic hypertrophy. 

Using a sample of 45 healthy male participants (mean age 23.8 years) randomly assigned 

to one of three eight-week RT groups: low (1SET, n = 15), moderate (3SET, n = 15), and 

high volume (5SET, n = 15), researchers compared baseline and post-test muscular 

strength assessments and muscular thickness (MT) measurements.  

Significant differences were observed in MT amongst the groups of participants. 

The 5SET group showed significantly greater MT than the 1SET group in the elbow 

flexor, rectus femoris, and vastus lateralis musculature. The significantly greater 

increases in MT measured in the high-volume group compared to the low-volume group 

validate the dose-response relationship of RT volume and hypertrophic training 

adaptations. Additionally, the lack of significant differences observed between groups in 

the post-exercise strength assessments, despite the presence of significant hypertrophic 

differences, alludes to the influence of sarcoplasmic hypertrophy. These findings also 

support the claim that hypertrophy of skeletal muscle fibers can indeed occur without 

concurrent increases in MVC or 1RM. 
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Although sarcoplasmic hypertrophy appears to have promising application in 

hypertrophy training programming, conflicting results suggest that additional research 

must be conducted to determine the precise role and implications of this physiological 

phenomenon in regard to increasing the size and contractile strength (MVC, 1RM) of 

human skeletal muscle tissue.  

Hyperplasia of Skeletal Muscle 

In addition to hypertrophy, another process, hyperplasia, has been hypothesized 

as a means of increasing the size of human skeletal muscle. As a process, hyperplasia 

differs from hypertrophy in that, hyperplasia involves increasing the number of muscle 

fibers within each muscle fascicle (Schoenfeld, 2012; 2016), while hypertrophy involves 

an increase in the size of individual muscle fibers. Evidence of muscular hyperplasia is 

lacking in humans, although, several studies have observed hyperplasia occurring in 

various animal species (Alway, Gonyea, & Davis, 1990; Gonyea, Sale, Gonyea, & 

Mikesky, 1986; Kelley, 1996). Hyperplasia studies focused on avian species have 

provided the strongest evidence to date that skeletal muscle is capable of growth via the 

addition of new muscle fibers. In the majority of these studies (e.g. Antonio & Gonyea, 

1993a; 1993b; 1994; Sola, Christensen, & Martin, 1973), muscle tissues were subjected 

to an overloading stretch stimulus, rather than an overloading mechanical stimulus 

typically used to induce hypertrophic adaptations in humans.  

In addition to insufficient human evidence, studies indicating the possibility of 

fiber hyperplasia have been criticized as lacking accuracy due to the difficult nature of 

counting the microscopic fibers present both prior to and following experimental 
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procedures (Paul & Rosenthal, 2002). With no established research-supported evidence to 

strongly postulate the process of hyperplasia in humans, individuals seeking to increase 

lean muscle mass have sought to promote such increases through hypertrophy of existing 

tissue. With few contemporary investigations focusing on hyperplasia within human 

subjects, it appears as though researchers have shifted their focus towards increasing our 

understanding of the various hypertrophic mechanisms and processes, and to 

understanding and manipulating individual variations in training adaptations.  

Hypertrophic Factors 

 Interindividual variations in training responses have been observed following both 

aerobic training (Mann, Lamberts, & Lambert, 2014) and RT (Erskine, Jones, Williams, 

Stewart & Degens, 2010; Hubal et al., 2005). Researchers have postulated that many 

personal factors influence an individual’s physical characteristics, and that these 

characteristics can highly influence an individual’s potential for adaptation (Schoenfeld, 

2016). In regard to hypertrophy, a number of individual factors have been identified 

which are believed to influence individual training adaptations and adaptation potential. 

Amongst these factors are genetics, sex, age, and training status. 

Genetics 

 The individual variability in training responses and variations in the maximum 

potential for adaptation are believed to be heavily influenced by two genetically 

dependent factors: genotype and phenotype (Schoenfeld, 2016). The term genotype is 

used to refer to the collective genetic makeup of an individual. In practical terms, an 

individual’s genotype describes the blocks of hereditary information which he or she 
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received from their parents (genes). How our bodies interpret and mechanically execute 

the information encoded within our genes is referred to as the process of gene expression. 

The expression of an individual’s genes, which results in the development of unique 

physical characteristics, is referred to as an individual’s phenotype. An individual’s 

phenotype influences many performance-influencing characteristics, including; muscle 

fiber type distribution and number (MacDougall, Sale, Alway, & Sutton, 1984), the 

activity of myogenic factors, and satellite cell function (Bamman, Petrella, Kim, 

Mayhew, & Cross, 2007; Bellamy et al., 2014; Riechman, Balasekaran, Roth, & Ferrell, 

2004; Schoenfeld, 2016). The interaction between these two factors, genotype and 

phenotype, and environmental stimuli is believed to highly influence an individual’s 

response to an exercise program and may account, at least in part, for the variations often 

observed in individual training adaptations (Hubal et al., 2005).  

The considerable variation in results observed in both men and women following 

RT has led to the development of specific terminology which vaguely describes 

responsiveness. These commonly used terms are responder and non-responder (Bamman 

et al., 2007; Jones et al., 2016, Schoenfeld, 2016). As individual-specific genotype and 

phenotype are thought to greatly influence responsiveness to RT, researchers have begun 

to theorize that the prescription of RT might be more effective if varied based on an 

individual’s specific genetic characteristics. This hypothesis has encouraged researchers 

to isolate specific genes in an effort to determine which genetic markers are most 

responsible for influencing training adaptations (Devaney et al., 2009; Pescatello, 

Devaney, Hubal, Thompson, & Hoffman, 2013).  
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In 2016, Jones and colleagues were the first to practically implement genotype-

specific training prescriptions in two groundbreaking studies (Jones et al., 2016). Twenty-

eight (n = 28) male athletes participating in varying sports completed the first study, 

while 39 (n = 39) male soccer players successfully completed the second. At the onset of 

the investigations, the genotype of all participants was determined via the DNAfit Peak 

Performance Algorithm, a DNA test which analyzes the genetic variants of 15 specific 

genes, all of which are believed to influence physical performance (Egorova et al., 2014). 

All participants were randomly assigned to an eight-week RT program, focusing 

on either high- or low-intensity training. This random assignment resulted in “matched 

training” for 34 athletes, where high-intensity training was prescribed to power genotype 

athletes (n = 15) and low-intensity training was prescribed to endurance genotypes (n = 

19). The remaining 33 athletes (13 power and 20 endurance) completed “mismatched 

training.” In both studies, the eight-week, matched-training protocol resulted in the 

development of significantly greater muscular power and endurance compared to the 

mismatched training. 

The results of genotype-specific training programs are compelling; however, 

much research must be conducted to fully elucidate the possible implications of such 

training strategies. One particular complication in gene expression research is the fact 

that genes do not operate singularly, rather the interaction of multiple genes and their 

specific locations within a genetic sequence (genetic loci) largely determine genetic 

influence (Schoenfeld, 2016). Due to the complexity associated with genetic research, 
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identifying hereditary predispositions and individual adaptation potential remains 

difficult and unreliable.  

Sex 

In addition to genetic factors, it has been shown that an individual’s biological sex 

also heavily influences the individual response to training (Abe, DeHoyos, Pollock, & 

Garzarella, 2000; Bamman et al., 2003; Ivey et al., 2000; Schoenfeld, 2016). Males and 

females experience significantly different training responses and adaptations and have 

differing potential to gain and maintain skeletal muscle (Ivey et al., 2000; Schoenfeld, 

2016). The average female possesses significantly less absolute and relative lean mass 

compared to the average male (Hansen & Kjaer, 2014; Schantz, Randall-Fox, Hutchison, 

Tydén, & Åstrand, 1983; Schoenfeld, 2016). These sex-based physical differences and 

others are often collectively referred to as sexual dimorphism.  

Dissimilar values of relative muscle mass between sexes have largely been 

attributed to differing chronic concentrations of circulating hormones (Schoenfeld, 2016). 

On average, men tend to possess greater circulating concentrations of testosterone, which 

is known to promote a positive muscle protein balance. Women, however, tend to possess 

higher circulating levels of estrogen. While the hormone estrogen has been shown to 

decrease muscle protein breakdown (Pöllänen et al., 2007), the anabolic effects of 

estrogen are lacking in comparison to those of testosterone (Schoenfeld, 2016).  

In response to a RT program designed to stimulate the growth of skeletal muscle, 

the average male has the potential to experience significantly greater absolute gains 

compared to the average female (Ivey et al., 2000; Schoenfeld, 2016). In relative terms, it 
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appears as though males and females experience similar rates of muscular growth 

following a period of RT (Abe et al., 2000; Schoenfeld, 2016). However, as the average 

female possesses significantly less relative muscle tissue at baseline values, post-training 

statistics depicting relative increases in muscle tissue tend to be biased to favor female 

trainees (Schoenfeld, 2016). 

The sex-based variance in hypertrophic responses to RT was demonstrated in a 

nine-week, unilateral strength training experiment conducted by Ivey and colleagues 

(2000). Eleven young men (n = 11) and eleven young women aged 20 to 30 (n = 11) 

volunteered to participate in the experiment. Following the training protocol, both groups 

of participants experienced significant muscular growth of the quadriceps muscle group 

of the exercised leg, however, the young males experienced significantly greater 

hypertrophy compared to the group of young women. Interestingly, the young male 

participants also experienced significant muscular growth in the quadriceps of the non-

exercised limb, while the females did not. This observation lends support to the 

hypothesis that systemic factors, such as chronic hormonal differences, serve an essential 

role in the hypertrophic process, and supports the belief that differences in lean mass 

between sexes are indeed influenced, at least in part, by these systemic factors.  

Age  

 An individual’s biological age is another factor which influences the potential to 

develop and maintain skeletal muscle (Buford et al., 2010; Roubenoff & Hughes, 2000; 

Schoenfeld, 2016). According to a systemic review on sarcopenia, the age-related 

atrophy of skeletal muscle, conducted by Buford et al. (2010), on average, humans reach 
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peak muscle mass between the ages of 20 and 40, after which they experience a 

consistent decline in skeletal muscle tissue. This decline generally begins after age 40 at a 

loss of .5% each year, until age 50 where the rate of loss increases up to 1 to 3% each 

year (Zacker, 2006). This decline is primarily due to the atrophy and loss of type II 

muscle fibers and motor neurons (Buford et al., 2010; Schoenfeld; 2016). While the 

effects of sarcopenia have been shown to be mitigated by a healthy, active lifestyle, the 

gradual decline of muscle tissue is an inevitability.  

Pursuant to the growth of skeletal muscle, increased biological age beyond 40 

years of age negatively affects hypertrophy via numerous physiological implications 

(Schoenfeld, 2016). A reduction in the quantity of type II muscle fibers and fast-twitch 

motor neurons reduces the total potential for fiber hypertrophy (Buford et al., 2010; 

Schoenfeld; 2016). Additionally, in the event that fast-twitch motor neurons die, slow-

twitch neurons may undergo motor unit remodeling, a process which may delay the 

atrophy of the type II fibers previously innervated by the now dead neurons (Zacker, 

2006). However, motor unit remodeling compromises the functionality of such fibers, 

reducing their efficiency and effectiveness. Reduced skeletal muscle function ultimately 

reduces the potential for fiber hypertrophy.  

Advancing age has also been associated with the development of anabolic 

insensitivity, resulting from a milieu of factors including decreased satellite cell content 

and activity, decreased enzymatic activity, heightened insulin resistance, and reduced 

sensitivity of the muscles to amino acid stimulation (Buford et al., 2010). This 

desensitization contributes to a chronic negative muscle protein balance, creating a 
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catabolic internal environment which is counterproductive to hypertrophy. It is important 

to note that older adults may still experience profound muscular growth (Ivey et al., 2000; 

Roth et al., 2001); however; research suggests that greater volumes of RT may be 

necessary to facilitate muscle protein accretion as one ages (Peterson, Sen, & Gordon, 

2011). Additionally, it has been recommended that individuals participate in resistance 

exercise earlier in life to potentially mitigate the effects of sarcopenia. 

 Research has determined that the decline of muscle tissue as one ages is also 

influenced by one’s sex (Hansen & Kjaer, 2014; Schoenfeld, 2016). On average, older 

female adults experience greater muscle loss per year compared to older men. This 

elevated muscle loss has been partially attributed to reduced circulating estrogen 

concentrations during the postmenopausal period (Hansen & Kjaer, 2014). The acute 

anabolic response to RT has also been shown to be lower in older women than in older 

men (Bamman et al., 2003).  

Training Status 

 While genetic characteristics, biological sex, and age are involuntarily 

predetermined, an individual’s training status is a controllable factor known to exert 

considerable influence on training outcomes (Schoenfeld, 2016). Acute training 

responses have been known to vary considerably between trained and untrained 

individuals (Peterson, Rhea, & Alvar, 2005; Schoenfeld, 2016; Stone et al., 1987). 

Untrained populations tend to experience an accelerated rate of adaptation early in a RT 

program. In regard to muscular hypertrophy, this observation has been explained by the 

ceiling effect hypothesis, which explains that the accruement and maintenance of 
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excessive muscle tissue can be cumbersome to the body, thus reducing physiological 

efficiency and burdening physiological functioning as well as human kinematics 

(Schoenfeld, 2016). As a result, researchers have theorized that the human body 

possesses a physiological limit for the addition of muscle tissue. As an individual 

approach their physiological limit, the rate of gains in skeletal muscle tissue are reduced 

via several physiological and neurological mechanisms. The mechanisms which are 

theorized to be responsible for the chronically-decreased rate of training adaptations 

include: reduced intracellular anabolic signaling (Coffey et al., 2006), decreased post-

training MPS (MacDougall et al., 1995), and decreased rate of improvements in 

neuromuscular efficiency (Behm, 1995).  

 The acute, training-induced accumulation of lactate has also been observed to 

differ greatly when comparing trained and untrained individuals (Pierce, Rozenek & 

Stone, 1993; Stone et al., 1987), an observation which signifies variability in the 

metabolic responses to exercise. When five trained (n = 5) and five untrained (n = 5) 

participants were asked to perform multiple sets of barbell squats at progressive 

intensities, Stone and colleagues (1987) observed significantly lower blood lactate 

concentrations following any given exercise intensity in trained individuals. Additionally, 

the researchers found that trained individuals performed significantly greater work 

volume and exhibited significantly greater blood lactate concentrations at the point of 

voluntary exhaustion. 

 Stone and colleagues (1987) also found that the trained participants were able to 

reach higher exercise intensities, while untrained participants reached voluntary 
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exhaustion much earlier during progressive exercise. The ability to perform squats at 

greater exercise intensities further increased the work volume performed by the trained 

participants. These findings indicate that trained individuals possess greater work 

capacity and are capable of producing and tolerating significantly greater blood lactate 

concentrations during exercise performed to exhaustion.   

 Pierce and colleagues (1993) found similar findings in a repeated-measures study 

where blood lactate concentrations were compared before and after eight weeks of RT in 

15 previously untrained males (n = 15). Following the eight-week, high-volume RT 

protocol, mean, post-test peak blood lactate significantly decreased (11.9 mmol*L-1 to 5.1 

mmol*L-1). These results are consistent with the observations of Stone and colleagues 

(1987), suggesting that trained individuals do indeed experience significantly lower blood 

lactate accumulation at submaximal exercise intensities compared to untrained 

individuals. These results help to confirm that the acute metabolic training responses do 

indeed vary significantly between trained and untrained populations. 

Hypertrophic Mechanisms 

While the factors which influence hypertrophy are composed of several 

characteristics unique to each individual, the mechanisms which are believed to facilitate 

hypertrophy include many distinct physiological processes which can occur within all 

generally healthy individuals. Currently, three primary mechanisms have been identified 

which facilitate the growth of skeletal muscle tissue (Schoenfeld, 2010; 2016; Schoenfeld 

& Contreras, 2014). These three mechanisms include: mechanical tension, exercise-

induced muscular damage (EIMD), and exercise-induced metabolic stress (EIMS). 
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Mechanical Tension 

 The majority of exercise physiology researchers agree that mechanical tension is 

the dominant factor for inducing muscular hypertrophy (Goldberg, Etlinger, Goldpsink, 

& Jablecki, 1975; Gonzalez, Hoffman, Stout, Fukuda, & Willoughby, 2016; Schoenfeld, 

2010; 2011; 2012; 2016; Zanchi, Lira, Seelaender, & Lancha, 2010). Independent of all 

other factors, mechanical loading of muscle cells can lead to increases in total muscle 

volume and CSA (Drummond et al., 2009; Schoenfeld, 2010; 2016). However, it is 

strongly believed that when mechanical loading is employed in combination with 

additional mechanisms the hypertrophic response to RT will be even more significant 

(Schoenfeld, 2010; 2012; 2016). 

By definition, mechanical tension refers to forces generated from within skeletal 

muscle and stretch-causing external forces (Schoenfeld, 2010; 2012; 2016). In practical 

terms, mechanical tension most often refers to two separate quantifiable concepts: time 

under tension and the total force generated by a muscle. Physiological adaptations 

resulting from mechanical tension have been shown to be triggered by 

mechanotransduction, a process by which cells experience a mechanical stimulus and 

initiate follow-on physiological events (Zanchi & Lancha, 2008). It is imperative that 

muscle cells experience an overloading-mechanical sensation for several myogenic 

pathways to be initiated.  

Mammalian target of rapamycin (mTOR) and muscle protein balance. The rate of 

MPS is crucial in the pursuit of hypertrophic increases in skeletal muscle mass (Burd, 

Tang, Moore, & Phillips, 2008; Drummond et al., 2008; Gonzalez et al., 2016). 
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Intramuscular net protein balance must be positive for hypertrophy to occur (Phillips, 

2014; Schoenfeld, 2012; 2016). Maintaining a positive muscle protein balance can be 

achieved in many ways. One can seek to enhance the rate of MPS, downregulate muscle 

protein breakdown (MPB), or attempt to positively influence muscle protein balance by 

achieving a combination of both of these factors.  

The activity of the protein kinase mammalian target of rapamycin (mTOR) greatly 

influences MPS rates, and by extension, muscle protein balance (Schoenfeld, 2010; 2016; 

Zanchi & Lancha, 2008). Within human skeletal muscle tissue, mTOR is present in two 

distinct protein complexes: mTORC1 and mTORC2 (Drummond et al., 2009; Shoefeld, 

2016). Each of these complexes carry out specific functions and are involved in different 

intramuscular processes. Although the critical role that mTORC1 plays in regulating MPS 

is well documented (Dreyer et al., 2006; Drummond et al., 2008; Drummond et al, 2009; 

Schoenfeld, 2016), the exact mechanisms by which mTORC1 directs the muscle 

remodeling process are unknown at this time.  

The intramuscular protein complex mTORC1 has been shown to become 

activated when muscle cells are subjected to a direct overloading, mechanical stimulus, 

thus, resistance exercise is the most common training modality utilized to achieve 

hypertrophic adaptations (Dreyer et al., 2006; Drummond et al., 2008; Phillips, 2014; 

Schoenfeld, 2012; 2016). Currently, the consensus is that mechanical loading equal to or 

greater than 65% 1RM is required to induce hypertrophic adaptations, although the 

results of more recent investigations have brought criticism to this recommendation 
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(Mitchell et al., 2012; Schoenfeld, 2013; 2016; Takarada, Takazawa, et al., 2000; 

Tanimoto et al., 2008).  

When activated, mTORC1 signals an upregulation in MPS rates, ultimately 

leading to a positive net muscle protein balance and facilitation of muscular growth 

(Gonzalez et al., 2016). This enhanced MPS rate has been observed in as little as two 

hours, and for up to 48 hours, post-exercise (Dreyer et al., 2006; Phillips, 2014; 

Schoenfeld, 2016). Additional validation of mTORC1’s influence on MPS has been 

observed following the treatment of rapamycin, an mTORC1 inhibiting substance.  

In their 2009 investigation, Drummond and colleagues assessed the hypothesized 

causal relationship between the post-exercise elevated rate of MPS and mTORC1 activity 

via an experimental study in which the treatment group was directed to take rapamycin. 

Analyses of blood samples collected from participants assigned to the experimental group 

revealed that blood rapamycin concentrations peaked immediately prior to the initiation 

of the RT protocol, and remained significantly elevated during the first two hours post-

exercise. Treatment group blood sample analyses also revealed that mTORC1 activity 

was indeed inhibited post-exercise. Additionally, muscle biopsies collect from treatment 

group participants revealed that MPS rates were not elevated post-exercise. When 

interpreting these results, the authors concluded that rapamycin treatment completely 

inhibited the activity of the protein complex mTORC1, and that this inhibition resulted in 

an unchanged MPS rate following heavy bouts of RT.  

Considering the role of mTORC1 in regard to MPS, established by previous 

researchers (Drummond et al., 2008; Zanchi & Lancha, 2008), the absence of elevated 
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MPS rates within the rapamycin group indicates that mTORC1 activity was inhibited due 

to the administration of the treatment, and provides additional evidence to support the 

influence that the protein kinase mTORC1 has on MPS and hypertrophy. 

Satellite cells and mRNA. In addition to mTOR and MPS, satellite cells and 

intramuscular messenger ribonucleic acid (mRNA) also serve as potential myogenic 

pathways which, when activated, can enhance the hypertrophic training response. 

Research has identified that satellite cells play a crucial role in promoting the 

hypertrophy of skeletal muscle fibers in humans (Kadi et al., 2004; Schoenfeld, 2010; 

2016: Toigo & Boutellier, 2006). Satellite cells, often referred to as muscle stem cells, are 

mono-nucleated cells which reside between the sarcolemma and basal lamina of skeletal 

muscle cells (Damas, Libardi, & Ugrinowitsch, 2018; Kadi et al., 2004; Schoenfeld, 

2010; 2016; Toigo & Boutellier, 2006). It has been shown that satellite cells are activated 

in response to two distinct stimuli: mechanical loading of sufficient magnitude 

(Schoenfeld, 2010; 2016) and mechanical stretch (Toigo & Boutellier, 2006). Once 

activated, satellite cells will procreate additional cells referred to as daughter cells (Kadi 

et al., 2004; Schoenfeld, 2016). These daughter cells have three potential roles: fusion 

with an existing myocyte, the donation of an additional nucleus to a parent muscle cell, or 

daughter cells can become a new satellite cell, in which case, they will revert to an 

inactive state.  

 Unlike satellite cells, the cells which make up skeletal muscle fibers in humans 

are multi-nucleic (Kadi et al. 2004; Schoenfeld, 2016; Toigo & Boutellier, 2006). Each 

nucleus of a muscle cell exerts control over a specified intracellular space, a concept 
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referred to as myonuclear domain (Kadi et al., 2004). Each nucleus’ myonuclear domain 

is finite, although research has proven that the volume of each nuclear-controlled area 

may be enhanced through training. In addition to intracellular space, each myonucleus 

exerts control over local mRNA molecules, which reside within each specified 

myonuclear domain. The mRNA molecules within a muscle cell play a critical regulatory 

role in the MPS process via their role in the transcription and translation of new muscle 

proteins (Kadi et al. 2004; Schoenfeld, 2016). There are currently two primary 

hypotheses which attempt to explain how intramuscular mRNA may enhance the rate of 

MPS: the volume increase hypothesis and the rate increase hypothesis.  

The first hypothesis states that the increased rate of MPS is facilitated via an 

increase in intramuscular mRNA content (Kadi et al., 2004). This increase in the total 

number of mRNA molecules is a pre-translational event and is speculated to be facilitated 

by the nucleic donation from satellite cells to their corresponding parent muscle fiber. As 

the controllable intracellular space and mRNA volume of each myonucleus is limited, the 

donation of additional nuclei from satellite cells is essential to support the continued 

increase in mRNA content and cellular expansion. This hypothesis supports the claim 

that satellite cells play a critical role in hypertrophy, due to the necessity of nucleic 

donation to support increases in cytoplasmic and mRNA volume.   

A second hypothesis states that MPS rates might be enhanced due to an increase 

in the rate at which existing mRNA molecules are able to encode new amino acids (Kadi 

et al., 2004). This increased rate of mRNA gene expression is a translational event, as the 

myonucleus is able to translate the mRNA molecules at a faster rate, thus increasing the 
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rate of gene expression, and ultimately MPS. In a study of training and detraining 

associated modifications in the intramuscular content of satellite cells and mRNA, Kadi 

and colleagues (2004) established that 30 days of progressive RT is sufficient to 

significantly increase satellite cell and mRNA content. Analysis showed that mRNA 

levels were significantly increased after 30 days of training and significantly elevated at 

three times baseline levels immediately following the 90th day of training. During the 

detraining phase, mRNA returned to pre-training levels after just three days.  

Researchers did not observe any significant adaptations in myonuclear domain 

size or myonucleic content. The findings of this investigation support the claims that 

intramuscular mRNA content, satellite cell volume, and myonuclear domain size can all 

be enhanced through prolonged (i.e. 90 days or longer) mechanical stimulation of muscle 

cells via progressive-resistance exercise.  

The influence that mechanical stimulation can have on mTOR activity, muscle 

protein balance, the activity of satellite cells, and intramuscular mRNA gene expression 

support the claims by previous researchers (Goldberg et al., 1975; Gonzalez et al., 2016; 

Schoenfeld, 2010; 2011; 2012; 2016) that mechanical tension alone is a sufficient 

mechanism to induce hypertrophy in skeletal muscle cells. However, isolating 

mechanical tension from additional hypertrophic mechanisms has proven exceedingly 

difficult in experimental settings, thus the true role of mechanical tension in regard to the 

growth of myofibers remains to be fully elucidated. Future researchers should continue to 

study the primary mechanisms of hypertrophy, and should seek to isolate each 
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hypertrophic mechanism, through creative exercise programming, in vitro testing, and 

through continued research focusing on various animal species. 

Exercise-Induced Muscle Damage  

 In addition to mechanical tension, researchers have extensively investigated a 

second mechanism, exercise-induced muscular damage (EIMD), which has been 

identified as a heavy influencer of the post-exercise hypertrophic response. In 2012, 

Schoenfeld evaluated the role that EIMD has on skeletal muscle hypertrophy. The 

findings of Schoenfeld’s review were conflicting. Although many contemporary studies 

(Flann, LaStayo, McClain, Hazel, & Lindstedt, 2011; Pope, Willardson, & Schoenfeld, 

2013; Reeves et al., 2006; Takarada, Nakamura, et al., 2000; Zanchi et al, 2010) have 

provided evidence that muscular hypertrophy can be promoted in the absence of EIMD, 

additional studies have supported the idea that EIMD has the potential to enhance 

hypertrophic adaptations following exercise (Damas et al., 2018; Schoenfeld, 2012; 

Schoenfeld & Contreras, 2018). EIMD increases the release of inflammatory substances, 

enhances the activity of satellite cells, and upregulates the insulin-like growth factor-1 

(IGF-1) system, all of which promote hypertrophy of muscle fibers (Schoenfeld, 2012). 

Currently, studies focusing on EIMD have failed to provide sufficient evidence to support 

a causal relationship between EIMD and muscular hypertrophy (Brentano & Martins 

Kruel, 2011). The lack of evidence in support of EIMD as a substantial, or even a 

necessary, factor in the mediation of muscular growth is largely due to the difficulty 

involved in isolating the single hypertrophic mechanism from additional mechanisms. 
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This methodological problem is easily observed when reviewing studies which 

investigate EIMD following aerobic exercise. 

Aerobic exercise and EIMD. Aerobic exercise studies evaluating training 

adaptations resulting from cycling (Harber et al., 2012) and running (Konopka & Harber, 

2014) have found that these modes of exercise can result in significant amounts of EIMD, 

which may be accompanied by significant increases in skeletal muscle CSA in previously 

untrained individuals. However, muscular hypertrophy resulting from aerobic exercise 

has commonly been observed in type I muscle fibers only (Harber et al., 2009; 

Schoenfeld, 2016), and rarely in type IIa fibers (Harber et al., 2012). In addition, CSA of 

type II fibers have also been shown to decrease significantly in well-trained distance 

runners following high-intensity interval training (Kohn, Essén-Gustavsson, & Myburgh, 

2011). The lack of hypertrophy of type II muscle fibers following aerobic training 

suggests that the hypertrophic potential of such training is limited, as type II fibers are 

well known to possess greater potential for cross-sectional growth (Schoenfeld, 2016). 

Aerobic training studies which intentionally induce considerable muscular damage, via 

downhill running, have also failed to induce significant muscular growth in well-trained 

individuals (Brentano & Martins Kruel, 2011; Schoenfeld, 2012). The results of 

hypertrophy-focused aerobic studies indicate that aerobic exercise is not an ideal mode of 

training to induce significant muscular growth in currently active individuals, and that 

EMID is not consistently concurrent with hypertrophy.  

Traditional RT and EIMD. Research focusing on RT and muscle damage has led 

to the current consensus that resistance exercise which induces a moderate amount of 
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EIMD may be beneficial to a hypertrophy-focused training program (Schoenfeld, 2012; 

2016). This recommendation has been made after observations in previous studies (Allen, 

2001; Newham, Jones, Clarkson, 1987; Radák, Pucsok, Mecseki, Csont, & Ferdinandy, 

1999; Schoenfeld, 2012) identified a maximum threshold for inducing muscular damage, 

after which maximal force production capabilities are decreased significantly. A 

significant reduction in muscular force production decreases the potential for optimizing 

mechanical tension, due to the obligatory lower intensity exercise during following sets. 

Compromising the total mechanical tension produced during a RT session inevitably 

compromises the potential for maximal post-exercise hypertrophic adaptations. Excessive 

EIMD has been observed following unaccustomed exercise and RT involving high-force 

eccentric muscle actions (Schoenfeld, 2012), and thus, these training protocols have been 

examined at length in attempts to determine the inherent effects of high-intensity training 

techniques. 

Eccentric exercise. In his 2012 review focusing on EIMD, Schoenfeld identified 

eccentric exercise as one of the primary causes of EIMD. Newham et al. (1987) tested the 

influence that eccentric RT can have on muscular damage using the single-arm bicep 

curl.  

Participants (n = 8, five males and three females) were instructed to perform one 

maximal voluntary contraction (MVC) of the single-arm bicep curl exercise, against a 

mechanical winch every 15 seconds for three 20-minute training sessions which were 

each separated by two weeks. Experimenters used the mechanical winch to slowly 
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overcome the MVC of each participant, forcing an eccentric muscular contraction to 

occur.  

 Newham et al. (1987) reported a significant decrease in the MVC of subjects 

immediately following the first bout of eccentric RT. This decrease was found to be 

insignificant following the second and third bouts of training, suggesting that muscle 

fibers can adapt to eccentric training, over time. Similarly, measured values for plasma 

creatine kinase (CK), a known marker for assessing muscular damage (Koch, Pereira, & 

Machado, 2014; Schoenfeld, 2012; 2016), were significantly elevated following the first 

bout of training only and decreased with each successive bout. This adaptive 

phenomenon is commonly referred to in the literature as the repeated bout effect. The 

repeated bout effect suggests that acute post-exercise EIMD associated with high-

intensity RT programs will decrease overtime. This concept is particularly interesting as 

muscular hypertrophy associated with RT is observable long after the acute post-exercise 

muscle damage has tapered off significantly. These observations and the repeated bout 

hypothesis further refute the necessity of EIMD as component of a RT program which 

seeks to induce muscular growth. 

Vascular occlusion and muscle damage. Many researchers have sought to induce 

muscular hypertrophy without the accompanying muscle damage which is often 

associated with traditional RT (Allsopp & May, 2017; Takarada, Nakamura, et al., 2000; 

Wilson, Lowery, Joy, Loenneke & Naimo, 2013; Zanchi, 2010). Takarada, Nakamura, et 

al. (2000) and Takarada, Takazawa, et al. (2000) conducted investigations which support 

Schoenfeld’s assessment that EIMD is not essential for muscular hypertrophy to occur. 
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During both studies, Takarada and colleagues investigated vascular occlusion as this 

technique creates a hypoxic environment for skeletal muscle cells by partially obstructing 

major blood vessels leading to the targeted musculature, which has been shown to 

increase motor unit recruitment when training with lower-intensity loads (Moritani, 

Sherman, Shibata, Matsumoto, & Shinohara, 1992; Schoenfeld, 2013; 2016). Their first 

study focused on low-intensity RT performed with vascular occlusion and the resulting 

acute responses in plasma growth hormone (GH), creatine kinase (CK), and lactate 

(Takarada, Nakamura, et al., 2000).  

Takarada, Nakamura, et al. (2000) recruited male athletes (n = 6), aged 20 to 22 to 

participate in their vascular occlusion study. The researchers utilized a repeated-measures 

design in which participants completed the testing procedure with occlusion devices 

implemented, and then without. Participants performed a seated, bilateral knee extension 

through a 90-degree range of motion.  

 Plasma GH and blood lactate levels increased significantly following the training 

protocol. Plasma CK concentrations did not increase significantly due to the low-intensity 

occlusion training procedure, indicating that EIMD did not reach significant levels. Given 

the well documented anabolic influence of both GH and lactate (Schoenfeld, 2012; 2016; 

Tsukamoto et al., 2018), the significant increases in these substances post-exercise 

indicates that low-intensity RT with vascular occlusion may promote increases in skeletal 

muscle hypertrophy.  

 In a second study, Takarada, Takazawa, et al. (2000) recruited older women (n = 

24) aged 47 to 67 with the intention to assess the long-term (16 weeks) training 
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adaptations of three different RT protocols: low-intensity (30 – 50% 1RM) with 

occlusion (LIO), low-intensity without occlusion (LI), and high-to-moderate intensity (50 

– 80%) without occlusion (HI). During each protocol, participants performed the seated, 

single-arm dumbbell curl exercise. The researchers compared pre- and post-exercise CSA 

of the elbow flexor and extensor muscles.  

All three protocols resulted in significant increases in CSA or the biceps brachii 

and brachialis muscles. The LIO and HI protocols resulted in significantly greater 

increases compared to the LI protocol (6.9%, 3.8%). Increases in CSA were not 

significantly different between the LIO (20.3%, 17.8%) and HI (18.4%, 11.8%) 

protocols. Interestingly, the triceps brachii muscle only experienced significant increases 

in CSA following the occlusion training, although the authors offered no explanation as 

to the precise mechanisms responsible for this result.  

The controversial results of vascular occlusion (VO) and blood flow restriction 

(BFR) studies such as those conducted by Takarada and colleagues have provided 

substantial evidence questioning the necessity of high-intensity RT techniques in the 

pursuit of hypertrophy. The results of studies such as these have also increased the need 

for future researchers to conduct additional investigations focused on these techniques 

and their associated exercise-induced metabolic stress (EIMS) in order to elucidate the 

precise mechanisms and myogenic pathways which are responsible for muscular growth 

in response to low-intensity RT.  
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Metabolic Stress 

The last primary mechanism believed to heavily influence the growth of skeletal 

muscle fibers is metabolic stress. In the context of exercise, metabolic stress is a term 

used to refer to the accumulation of various metabolites, or by-products of metabolic 

processes (Schoenfeld, 2013). These metabolites primarily include lactate, hydrogen 

(H+), and inorganic phosphate (Pi) (Gentil et al., 2006; Green et al., 1983; Reeves et al., 

2006; Schoenfeld, 2013; 2016; Takarada, Nakamura, et al., 2000; Takarada, Takazawa, et 

al., 2000; Tsukamoto et al., 2018). During RT, metabolites are primarily created through 

the process of anaerobic glycolysis (Green et al., 1983; Rodrigues et al., 2010), as 

glycolysis is the primary process utilized to rapidly replenish stores of adenosine 

triphosphate (ATP) to facilitate further muscular contractions.  

Although several physiological mechanisms have been proposed to explain how 

EIMS mediates the hypertrophic process, these mechanisms are not fully understood, and 

thus, they have not been entirely substantiated. Additionally, best practice methods for 

inducing maximal EIMS have not been determined. Future research should evaluate the 

role of various training variables on intra- and post-exercise EIMS. The following 

subsections will review the current literature on EIMS and will focus on the substantiated 

and hypothesized processes which may influence the post-exercise accumulation of 

metabolites and the growth of human skeletal muscle cells.  

Cellular swelling. One process through which EIMS is believed to mediate 

hypertrophy involves a training-induced increase in intra-cellular pressure (Schoenfeld, 

2013; 2016; Schoenfeld & Contreras, 2014). The enhanced intra-cellular pressure 
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gradient which is commonly observed in conjunction with EIMS is commonly referred to 

as cellular swelling, or the muscle pump (Schoenfeld, 2013; 2016; Schoenfeld & 

Contreras, 2014). Cellular swelling is a phenomenon which is heavily dependent upon the 

intensity, rest duration, and type of exercise performed. Resistance exercise which is 

highly dependent on anaerobic glycolysis, and which is conducted with relatively short 

inter-set rest intervals, has been shown to illicit a significant cellular swelling response 

(Schoenfeld, 2013; Schoenfeld & Contreras, 2014). 

When one examines the processes which ultimately contribute to cellular 

swelling, the connection between this physiological phenomenon and RT becomes clear. 

Exercise which invokes repeated intense muscular contractions has the potential to 

compress veins attempting to carry blood out of working tissues (Schoenfeld, 2013; 

2016; Schoenfeld & Contreras, 2014). However, arteries continue to supply freshly 

oxygenated blood to activated musculature in an attempt to supply oxygen and other 

nutrients to meet the metabolic demands of exercise. Additionally, acute vasodilation of 

localized arteries and arterioles during exercise further enhances the delivery of blood to 

working tissues. This enhanced delivery of fluid to myocytes, coupled with the depressed 

ability of veins to remove intramuscular fluid, creates a high, intramuscular pressure 

gradient (Schoenfeld & Contreras, 2014). The resulting increased intramuscular plasma 

volume allows blood from nearby capillaries to exude into interstitial spaces surrounding 

each myocyte, causing extracellular pressure to be significantly increased, further 

increasing the accumulation of fluids within effected muscle cells. Additionally, exercise 

which is primarily fueled by anaerobic glycolysis produces substantial intramuscular 
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volumes of metabolic byproducts (lactate, H+, and phosphate). This increase in 

intramuscular solutes also increases the intramuscular pressure gradient, causing 

additional fluid to enter muscle cells (Schoenfeld & Contreras, 2014). Each of these four 

factors, reduced venous fluid release, increased vasodilation, increased interstitial 

pressure, and increased intracellular solute concentration, result in a compounded 

increase in intracellular pressure. 

The significantly elevated intramuscular pressure associated with cellular swelling 

is believed to mediate hypertrophy through a myriad of observed and hypothesized 

processes. Cellular swelling has been shown to enhance the hypertrophic training 

response due to the positive influence that cellular hyperhydration has demonstrated on 

MPS (Millar, Barber, Lomax, Travers, & Shennan, 1997). Additionally, a strong causal 

relationship has been identified between cellular hypohydration and increased 

proteolysis, suggesting that cellular hyperhydration (or at least euhydration) negatively 

influences rates of muscle protein breakdown (Häussinger, 1996; Haussinger, Lang, & 

Gerok, 1994). These combined effects create an anabolic intramuscular environment 

which supports the accruement of additional contractile proteins. 

In addition to promoting a positive muscle protein balance, researchers have 

theorized that cellular swelling also promotes hypertrophy via enhanced signaling of 

anabolic pathways, which is initiated by integrin-associated volume osmosensors located 

within each muscle fiber (Schoenfeld, 2013; 2016; Schoenfeld & Contreras, 2014). These 

intramuscular osmosensors are stimulated in response to excessive swelling-induced 

stretching of the sarcolemma. This excessive intracellular pressure is perceived as a threat 
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to cellular integrity. In response to the threat of cellular rupturing, osmosensors initiate 

signals which upregulate several myogenic pathways in an effort to reinforce the cellular 

ultrastructure, thus decreasing the potential for future cellular damage and facilitating the 

additional accretion of intramuscular proteins (Schoenfeld, 2013; 2016; Schoenfeld and 

Contreras, 2014). 

Enhanced release of anabolic hormones. In addition to facilitating the 

phenomenon of cellular swelling, EIMS has been shown to positively influence 

concentrations of circulation anabolic hormones. Anabolic hormones, such as 

testosterone (T), GH, and IGF-1 positively influence muscle protein balance by 

supporting increased rates of MPS (Buresh, Berg, & French, 2009; Schoenfeld, 2013). 

Although the acute release of anabolic hormones has long been associated with the 

performance of high-intensity RT (Ahtiainen, Pakarinen, Kraemer, & Häkkinen, 2003; 

Schoenfeld, 2011; 2012), a growing body of evidence is immerging which has connected 

increased anabolic hormonal release to low-intensity resistance exercise performed with 

partial VO (Reeves et al., 2006; Takarada, Nakamura, et al., 2000). The results of such 

studies offer compelling arguments in support of metabolic stress as a means of elevating 

circulating anabolic hormones. In one RT study, Reeves et al. evaluated the influence that 

lactic acid concentrations can exert on acute circulating hormone concentrations by 

analyzing and comparing the physiological responses to three different RT protocols.  

 Reeves et al. (2006) recruited healthy resistance-trained, male college students (n 

= 8) to participate in an investigation to a) compare the responses in GH, T, cortisol, and 

lactic acid concentrations following low-volume RT performed with partial BFR to those 
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observed following traditional RT; and b) determine the effects of statically applied 

occlusion devices on skeletal muscle fibers. Researchers observed the metabolic and 

hormonal responses resulting from three RT protocols: light resistance occlusion (LRO) 

protocol, moderate resistance without occlusion (MR) protocol, and the attachment of an 

occlusion device without exercise (OO).   

The LRO protocol alone resulted in a significant increase in plasma GH 

concentrations immediately post-exercise. There were no significant changes in serum T 

or cortisol concentrations observed following any of the testing procedures. These 

findings indicate that GH concentrations can indeed be manipulated via alternative 

methods to high-intensity RT, possibly refuting the long-standing belief that heavy RT is 

essential to the hypertrophic process (Reeves et al., 2006). However, the authors noted 

that the musculature targeted by their investigation (bicep brachii and gastrocnemius) 

have a relatively low volume of muscle mass, and thus, this study examined the effects of 

lower volume training. The investigators speculated that higher volume training, which 

could be performed utilizing larger muscle groups, may illicit differing results than those 

observed in this investigation. 

The findings of this investigation also suggest that both the LRO and MR 

protocols may be viable methods to illicit a significant metabolic response, and the 

associated benefits of metabolic stress in regard to growth of muscle tissue (Gentil et al., 

2006; Green et al., 1983; Reeves et al., 2006; Schoenfeld, 2013; Takarada, Nakamura, et 

al., 2000; Tanimoto, Madarame, & Ishii, 2005). Considering the previously established 

role of GH in promoting increases in the rate of MPS (Buresh et al., 2009; Schoenfeld, 
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2013), the additional significant GH response observed post-LRO training validates the 

usefulness of such training in RT programs focused on the development of lean muscle 

mass. The combination of metabolic and hormonal factors resulting from low-intensity 

RT performed with partial VO indicate that training techniques of this nature may be 

superior to traditional RT in optimizing the hypertrophic response. 

Enhanced fiber recruitment. During activities of daily living and traditional 

resistance exercise, skeletal muscle fibers are activated in a pattern described by 

Henneman’s Size Principle (Henneman, Somjen, & Carpenter, 1965), which states that 

motor units are activated according to their corresponding size, from smallest to largest, 

only when their contribution to total force production is required. This principle dictates 

that larger, high-threshold motor units, and the muscle fibers which comprise each motor 

unit, will remain inactive during low-intensity RT. As larger, high-threshold motor units 

encompass a greater number of muscle fibers and larger, type II fibers, it’s logical that 

larger motor units carry greater hypertrophic potential, and thus, optimizing the growth of 

skeletal muscle fibers can only be accomplished if these motor units are activated. 

In the pursuit of maximizing the hypertrophic training response, it is vital that as 

many motor units as possible are activated during each training session (Kraemer & 

Ratamess, 2004; Schoenfeld, 2016). When muscle fibers are innervated, they will 

experience the training stimulus, and thus, have the potential to adapt. Heavy RT of 

sufficient intensity has been shown to activate the full spectrum of muscle fiber types 

(Schoenfeld, 2016), however, muscular fatigue, induced via substantial metabolic stress, 

has been shown to contradict the size principle of muscle fiber recruitment, resulting in 
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the activation of high-threshold motor units during low-intensity RT (Gollnick, 

Armstrong, Sembrowich, Shepherd, & Saltin, 1973; Sahlin, Soderlund, Tonkonogi, & 

Hirakoba, 1997; Schoenfeld, 2013; 2016). This abnormal pattern of fiber recruitment has 

been observed particularly following low-intensity RT performed to muscular failure, 

indicating that training to failure may be necessary when training at lower intensities to 

maximize fiber recruitment (Schoenfeld, 2013).   

Currently, several mechanisms have been purported to explain the reduced 

recruitment thresholds observed during low-to-moderate intensity RT (Schoenfeld, 2013; 

2016). One such mechanism is the accumulation of Pi and H+, which has been shown to 

inhibit the contractility of lower-threshold motor units, thus reducing their potential for 

force production (Debold, 2012; Schoenfeld, 2013; Smith & Reid, 2006). As a result, 

additional, larger motor units are recruited to generate sufficient force to complete the 

desired muscular action (Schoenfeld, 2016).  

A second hypothesis suggests that an increased production of reactive oxygen 

species (ROS), initiated during exercise, accelerates the symptoms of fatigue and 

contributes to contractile dysfunction in the later stages of muscular fatigue (Debold, 

2012; Smith & Reid, 2006). One specific ROS that has been shown to effect muscular 

contractility is peroxynitrite (Snook, Li, Helmke, & Guilford, 2008). Snook and 

colleagues found that the filament velocity of actin was reduced when inoculated with 

approximately 10 μM of peroxynitrite. As a result of this effect, the researchers observed 

a compromised actomyosin interaction, which increased the force generating capabilities 

of the myosin myofilament, due to a decreased detachment rate from actin (Snook et al., 
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2008). Although Snook and colleagues concluded that peroxynitrite indeed contributed to 

contractile dysfunction, the researchers also noted that, based on their findings, the effect 

was minimal. Currently, the degree to which ROS production and accumulation effects 

muscular contraction remains unknown and requires further study. 

Some researchers have also speculated that hypoxia, induced via BFR, may 

disrupt the contractility of low-threshold fibers. As a result, higher-threshold motor units 

are activated to sustain force output when training at low intensities (Moritani et al., 

1992; Schoenfeld, 2013). Moritani and colleagues (1992) observed progressive increases 

in both the amplitude and frequency of motor unit electromyography (EMG) spikes 

during low intensity (20% MVC), intermittent, isometric contractions when oxygen 

availability was compromised (via pressure inflated cuff). These findings suggest that an 

increased activation of higher-threshold motor units was required to maintain isometric 

force production during low-intensity occlusion training.  

Researchers investigating motor unit recruitment during submaximal sustained 

(Sahlin et al., 1997) and short-duration (Gollnick et al., 1973) exercise have also 

estimated the extent of fiber recruitment by examining post-exercise PCr and 

intramuscular glycogen depletion. Sahlin and colleagues (1997) examined muscle fiber 

recruitment during cycling performed to exhaustion at 75% VO2max. The investigators 

noted that, prior to exercise, PCr levels in type II fibers were approximately 20% greater 

than levels measured within type I fibers. However, upon reaching fatigue, PCr levels 

were measured to be similar in both fiber types, suggesting that all fibers analyzed were 

recruited during the exercise protocol. Gollnick and colleagues (1973) also observed 
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abnormal recruitment of motor units during 60-second cycling sprints performed at 

approximately 150% of participant aerobic power. Among their findings, Gollnick et al. 

noted that the first muscle fibers to experience glycogen depletion were fast-twitch, type 

II fibers, suggesting that high-threshold motor units were activated earlier than their 

slow-twitch, lower-threshold counter parts during heavy exercise. These observations of 

abnormal recruitment patterns contradict Henneman’s Size Principle, and may lend 

support to abnormally enhanced recruitment of larger, high-threshold units during low-

intensity RT. 

Additional researchers, however, have observed significantly lower fiber 

activation during low-intensity RT (Manini & Clark, 2009; Schoenfeld, 2016; Suga et al., 

2009). Using inorganic phosphate splitting, Suga et al. (2009) compared the effects of 

low-intensity (20% 1RM) occlusion training and moderate-intensity (65% 1RM) 

traditional resistance exercise on fast-twitch fiber recruitment. The investigators found 

that participants experienced only 31% fast-twitch fiber recruitment during the low-

intensity occlusion protocol compared to 70% recruitment observed during traditional 

moderate-intensity RT. Further evidence contradicting enhanced fiber recruitment during 

low-intensity occlusion training was observed by Manini and Clark (2009), where EMG 

analyses depicted significantly lower recruitment during low-intensity (20% 1RM) 

occlusion training compared to high-intensity (80% 1RM) traditional RT.  

Considering evidence that prolonged (16 weeks) low-load occlusion training can 

result in similar muscular growth compared to traditional RT (Takarada, Takazawa, et al., 

2000), the conflicting observations surrounding the extent of motor unit recruitment 
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during low-load training suggest that fiber recruitment alone cannot fully explain 

hypertrophic adaptations. Additionally, mixed results surrounding enhanced recruitment 

of high-threshold motor units and fast-twitch fibers during low-intensity RT dictates that 

additional research be conducted to increase our understanding of the mechanisms which 

mediate the innervation of high-threshold motor units during low-intensity contractions.  

Methodological Considerations 

The Influence of Lactate on the Hypertrophic Process 

 Lactate is the primary metabolic substrate produced within myocytes and red 

blood cells during anaerobic exercise, or times when oxygen availability is compromised 

(Tsukamoto et al., 2018). Currently, the effects of lactate accumulation on training 

adaptations are not fully understood. However, recent in vitro research has provided 

evidence that lactate may enhance satellite cell differentiation (Willkomm et al., 2014; 

Tsukamoto et al., 2018) and anabolic signaling (Nalbandian & Takeda, 2016).  

 Willkomm et al. (2014) treated C2C12 myoblasts, myocyte precursor cells found 

in mice, with 10mM and 20mM of lactate for two hours a day over a five-day period. 

C2C12 cells were selected based on the characteristics which they have in common with 

skeletal muscle satellite cells in humans: they are capable of undergoing rapid 

differentiation and they procreate contractile myotubes. At the conclusion of the testing 

period, researchers concluded that lactate administration-initiated withdrawal from the 

cellular cycle and early differentiation in C2C12 cells, resulting in the formation of new 

myoblasts. However, myosin heavy chain (MHC) and myogenin, two markers reflecting 

the occurrence of late differentiation (myotube fusion), were decreased within 
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experimental cells. These results suggest that, while lactate positively influences the rapid 

differentiation of C2C12 cells into myoblasts, the presence of the metabolic intermediary 

may also hinder the differentiation of myoblasts into fused myotubes, thus delaying the 

development of additional myocytes. 

In a similar experiment, Tsukamoto and colleagues (2018) demonstrated that 

cultured C2C12 cells experienced significantly accelerated myogenesis when cultured for 

five days with 10mM of lactate. Researchers selected 10mM as the treatment dosage as 

this volume of lactate is commonly observed in vivo during moderate-to-high intensity 

exercise (65% to 85% Wmax). After five days of lactate treatment, 58.5% of treated 

myoblasts successfully fused forming myotubes (a precursor to skeletal muscle fibers), 

compared to the significantly lower fusion rate of the untreated cells which was, 38.3%. 

These findings seem to contradict the results of Willkomm et al. (2014) and suggest that 

lactate indeed positively influences both early and late differentiation of C2C12 cells in 

vitro and suggests a similar relationship may exist between lactate and satellite cells. 

Lactate administration has also been observed to influence rates of MPS (Oishi et 

al., 2015). When Oishi and colleagues (2015) treated C2C12 myotubes with 10mM of 

lactate for a six-hour period, the cultured samples experienced significantly elevated 

myogenin levels and p70S6K phosphorylation, a known primary regulator of MPS, when 

compared to a control culture which did not receive the lactate treatment. However, a 

more recent in vitro study (Tsukamoto et al., 2018), found that p70S6K phosphorylation 

was unaffected by sustained (five days) lactate treatment.  
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Further support of the potential myogenic relationship between lactate and 

satellite cells can be observed amongst the results of a recent in vivo study which 

examined the effects of direct lactate injection on muscle regeneration and hypertrophy in 

mice (Tsukamoto et al., 2018). Tsukamoto and colleagues (2018) demonstrated the 

hypertrophic potential of sustained lactate exposure within the tibialis anterior 

musculature of mice (n = 9) when compared to a control group (n = 9). On day one of the 

study, all mice were subjected to muscular damage via glycerol injection. Each mouse in 

the experimental group was then injected with sodium lactate at a dosage of 

500mg/kg/day over a seven-day period. Three mice from the experimental group were 

sacrificed on day seven, 14 and 28 of the study.  

Upon examination of experimental group subjects, researchers observed 

significantly elevated muscle tissue regeneration and fiber hypertrophy. The fact that 

lactate administration was induced via injection in this study, rather than through 

exercise, eliminates any potential influence from mechanical loading (muscular tension) 

on fiber growth, and thus, suggests that the presence of lactate alone initiated the 

significant physiological adaptations observed. 

Due to semi-inconsistent findings, future research is needed to determine the full 

myogenic potential of lactate administration (in vitro) and exposure (in vivo). 

Additionally, future research should seek to identify minimal and ideal concentrations at 

which lactate will influence hypertrophy. Researchers should also observe the effects of 

short-term (less than two hours) lactate administration to ascertain potential deviations 

from observations made during experiments involving more chronic lactate treatment 
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(two hours up to 28 days). Such research would be of potential benefit to populations 

who are unfit to participate in higher-intensity exercise, but who are in need of myogenic 

stimulation, namely aging-populations and rehabilitation patients.   

Evaluating Metabolite Accumulation 

Direct measures of lactate accumulation. When evaluating the exercise-induced 

accumulation of metabolites, researchers often proceed with one of two methods: 1) 

collect muscle biopsies, or 2) collect whole-blood samples (Tesch et al., 1982; Shanely et 

al., 2014). The former method includes invasive, potentially debilitating procedures 

involving the removal of irreplaceable muscle tissue. Collecting biopsy samples has also 

proven difficult during exercise and promptly post exercise. For these reasons, 

researchers often opt for the alternative method used to evaluate the accumulation of 

metabolites: whole-blood sampling.  

Indirect measures of lactate accumulation. Researchers have referred to the initial 

accumulation of exercise-induced lactate by a wide variety of names, including: 

anaerobic threshold (AT), lactate threshold (LT), onset of blood lactate accumulation 

(OBLA), and maximal lactate steady state (MLSS) (Plato, McNulty, Crunk, & Ergun, 

2008). Regardless of the term used, this metabolic marker indicates that anaerobic 

pathways are predominantly responsible for ATP resynthesis, and the resulting exercise-

associated lactate accumulation is a resultant of excessive lactate production beyond the 

ability of the body to eliminate the acidic metabolic by-product of anaerobic metabolism 

(Solberg, Robstad, Skjønsberg, & Borchsenius, 2005). Due to the purported negative 

impact that lactate accumulation is believed to exert on exercise performance 
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(Abdessemed et al., 1999; Myers & Ashley, 1997) researchers have long sought to 

identify and delay the occurrence of the AT. Many researchers have determined the AT 

by collecting venous and capillary blood samples from individual’s mid-exercise 

(Kraemer et al. 1990; Takarada, Nakamura, et al., 2000; Tanimoto et al., 2005). However, 

the direct measuring of blood lactate involves invasive methods such as blood draws and 

finger pricks. Due to the undesirable nature of these methods, many researchers have 

sought to indirectly measure exercise-induced lactate accumulation (Beaver, Wasserman 

& Whipp, 1986; Plato et al., 2008; Solberg et al., 2005). These researchers concluded that 

an accurate estimate of AT can indeed be determined via indirect measurements.  

 Indirect estimates of AT have been accurately calculated based on various 

ventilation metrics. Beaver and colleagues (1986) evaluated a computer simulated 

regression of the volume of oxygen (VO2) and the volume of carbon dioxide (VCO2) 

relationship and identified a crossing pattern which was indicative of excessive 

intramuscular lactate accumulation. This V-slope method has proven as a viable method 

of recognizing the OBLA as the excessive production and buffering of lactate results in a 

substantial increase in the VCO2 expired. 

 In addition to the V-slope method of estimating AT, other researchers have used 

the respiratory exchange ratio (RER) when estimating the point at which lactate 

production exceeds elimination rates (Myers & Ashley, 1997). It has been suggested that 

a significant rise in RER indicates the occurrence of the AT. However, RER cutoff values 

indicating the occurrence of the AT have varied considerable from one research team to 
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the next (Solberg et al., 2005). The inconsistency with the RER cutoff values used to 

indicate AT has led researchers to doubt the accuracy of the RER-estimated AT method.  

 Currently, few studies have monitored participant ventilatory exchange during the 

execution of resistance exercise. Researchers who have examined the metabolic effects of 

RT via ventilation have largely focused their investigations on individuals who had been 

diagnosed with chronic obstructive pulmonary disease (COPD) (Houchen-Wolloff et al., 

2014; Probst, Troosters, Pitta, Decramer, & Gosselink, 2006; Sillen, Janssen, Akkermans, 

Wouters, & Spruit, 2008). Symptoms of COPD, such as exercise intolerance, can result in 

decreased peripheral muscular force production and muscle mass (Sillenet al., 2008). 

Symptoms such as these make it difficult, dangerous, or in some cases, impossible for 

individuals to perform RT exercise at high intensities. Furthermore, these symptoms 

compromise assessments of muscular strength, and thus, decrease the accuracy of RT 

intensity prescriptions based on a percentage of 1RM.  

Future researchers seeking to observe the metabolic response to exercise via 

ventilation should focus their investigations on generally healthy and resistance-trained 

individuals. Additionally, future studies should include RT protocols which demand that 

participants work at a greater relative intensity. Such studies could prove useful in 

determining if ventilatory exchange can indeed serve as an accurate assessment of the 

exercise-induced metabolic response to RT. 

Training Variables 

Work volume. Work volume, or more simply volume, refers to the total quantity of 

exercise performed during a specified time period (Schoenfeld, 2016). In the context of 
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RT, volume is typically calculated by multiplying the number of exercise sets performed 

by the number of total repetitions completed (sets x reps). However, this equation fails to 

consider exercise intensity. To account for exercise intensity, volume load can be 

calculated by multiplying the training volume by the load lifted (sets x reps x load). 

Volume load (VL) is an important training variable to consider as it can highly influence 

training adaptations 

A dose response relationship has clearly been identified between RT volume and 

hypertrophic adaptations, until a maximal threshold is reached, at which point this 

relationship diminishes (Burd et al., 2010; Schoenfeld, 2016; Schoenfeld, Ogborn, & 

Krieger, 2016; Terzis et al., 2010; Wernbom, Augustsson, & Thomeé, 2007). A common 

consensus amongst RT researchers is that multiple sets of exercise are recommended to 

achieve optimal hypertrophic training responses (Schoenfeld, 2016; Wernbom et al., 

2007). 

 In a comprehensive review of research primarily focusing on untrained 

individuals, Wernbom and colleagues (2007) concluded that participants experienced 

greater daily increases in CSA of the elbow flexors when four-to-six sets of exercise were 

performed (.24%) compared to when three-to-three-and-a-half sets were completed 

(.17%). Wernbom et al. also concluded that, in addition to performing more total sets of 

exercise, performing a greater number of total repetitions per session resulted in 

significantly greater increases in muscle CSA (Schoenfeld, 2016; Wernbom et al., 2007). 

The completion of total repetitions of exercise in the range of 42 to 66 repetitions, 

resulted in an additional .11% of cross-sectional growth per day, compared to lower 
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ranges (7 to 38) (Wernbom et al., 2007). When Wernbom and colleagues evaluated the 

available research focusing on the hypertrophy of a larger muscle group, the quadriceps, 

the researchers concluded that performing 10 or more sets of exercise per training session 

and performing 40 to 60 repetitions per training session resulted in the greatest cross-

sectional growth per day (.14 and .13%, respectively).  

The dose-response relationship between RT volume and hypertrophic adaptations 

has also been observed within trained populations. Schoenfeld and colleagues (2019) 

found that five sets of repetitions per exercise elicited significantly greater increases in 

MT in the elbow flexors, mid-thigh, and lateral thigh when performed over an eight-week 

period, compared to a single set. 

In addition to hypertrophic outcomes, research focusing on the accumulation of 

metabolites in circulation and within muscle cells suggests that exercise-associated 

metabolic responses increase with training volume (MacDougall et al., 1999; Schoenfeld, 

2013; 2016). This observation appears to be logical as the primary source of EIMS is 

anaerobic metabolism, and the rate of ATP production via anaerobic energy pathways is 

increased significantly during, and in response to, RT conducted at moderate intensities 

(Schoenfeld 2013).  

Macdougall and colleagues (1999) observed and measured the metabolic 

responses following varying volumes of resistance exercise with the intention of 

evaluating the effect that lactate accumulation and intramuscular phosphocreatine (PCr) 

depletion have on fatigue in human skeletal muscle. Researchers randomly assigned male 

bodybuilding competitors (n = 8) to one of two groups: Group A performed a single set 
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of seated, single-arm bicep curls against 80% 1RM, and Group B completed three sets of 

repetitions with three-minute inter-set rest intervals. All sets of exercise were performed 

to failure. Pre and post-test muscle biopsies and blood samples were collected.  

Intramuscular and whole-blood lactate concentrations increased significantly for 

both groups, from pre-test to post-test measurements. However, the increase between 

groups was not statistically significant. Group A’s (low volume) post-exercise muscle 

lactate was measured at 91.4 mmol*kg-1 compared to 118 mmol*kg-1 measured in Group 

B (high volume). The single set of exercise performed by Group A participants resulted 

in a rise in whole-blood lactate from 1.7 to 3.5 mmol*L-1 while the three sets of exercise 

performed by Group B resulted in a rise from 1.7 to 4.7 mmol*L-1. 

The authors attributed the additional accumulation of intramuscular and whole-

blood lactate following three sets of resistance exercise to the inadequate length of rest 

time given between successive bouts of muscular contractions. The three-minute rest 

intervals allowed between each set of repetitions were not sufficient to allow for muscle 

lactate to be completely cleared, and for blood lactate to fully dissipate. Although 

statistically insignificant, the additional accumulation of lactate experienced by Group B 

participants indicates that increased physical work volume and short-duration inter-set 

rest periods contribute to an increased metabolic response.  

The insignificant differences in post-exercise lactate concentrations between 

groups suggests that three-minute rest periods allowed for the partial clearance of 

exercise-associated metabolic by-products and implicates that shorter rest periods may be 

beneficial for optimally inducing accumulated metabolic stress following repeated sets of 
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resistance exercise. Given the influence that rest periods may have on the metabolic 

response to training, this training variable warrants further discussion. 

Inter-set rest intervals. The manipulation of inter-set rest intervals and the 

resulting influence on EIMS has been studied at length (Abdessemed et al., 1999; 

Henselmans & Schoenfeld, 2014; Kraemer et al., 1990; Schoenfeld, 2013). Abdessemed 

and colleagues (1999), evaluated the metabolic effect of RT conducted with varying 

inter-set rest intervals. Abdessemed and colleagues recruited healthy, untrained males (n 

= 10) and utilized a repeated-measures design in which each participant performed 10 

sets of 6 repetitions of the barbell bench press exercise at approximately 70% of each 

individual’s 1RM. Each participant repeated this exercise protocol on three separate 

occasions, incorporating different inter-set rest intervals during each exercise session. 

The rest periods tested included: one minute (Prot1), three minute (Prot3), and five-

minute periods (Prot5). 

Abdessemed et al. (1999) found that participants experienced a significant 

increase in blood lactate accumulation when comparing sets four and ten of the Prot1 

exercise protocol. Although participants did experience progressive lactate accumulation 

with each additional set of repetitions, the inter-set lactate elevations were not statistically 

significant. The progressive increases in whole body lactate observed in Prot1 occurred 

simultaneously with degenerative effects on mean muscular power. Interestingly, 

Abdessemed et al. suggested that the significant decline in muscular power observed 

during the Prot1 protocol were not attributable to the accumulated lactate, rather 



53 

 

significant decreases in PCr were believed to have caused the significant decline in 

muscular power when 60-second inter-set rest intervals are allowed.  

Kraemer et al. (1990) also conducted a RT study focusing on the EIMS resulting 

from varying inter-set rest intervals. Researchers assigned recreationally trained male 

weight lifters (n = 9) to six heavy RT protocols to be performed in a randomly selected 

order, with one week separating each trial. The study’s experimental design was 

developed so that the six RT protocols were categorized into one of two series. The first 

series (S) of training sessions was classified as “strength workouts,” and included three 

RT protocols, including: 5 RM performed with three-minute rest intervals (primary 

workout), 10 RM performed with three-minute rest intervals (load control), and 5 RM 

performed with one-minute rest intervals (rest control). Series two (H) RT protocols were 

classified as “hypertrophy workouts,” which also consisted of three RT protocols, 

including: 10 RM performed with one-minute rest intervals (primary workout), 5 RM 

performed with one-minute intervals (load control), and 10 RM performed with three-

minute intervals (rest control). Variations of each series’ primary workout (load control 

and rest control) were included in the study to assist researchers in identifying the source 

(work, load, or rest interval) of observed deviations in post-exercise lactate values. 

Additionally, participants performed significantly less work volume in S training sessions 

compared to the workouts performed in the H series.  

In both series, post-exercise whole blood lactate was observed to be greatest 

following the training sessions in which participants performed exercises with 60-second 

inter-set rest periods. This result suggests that short (e.g. 60 seconds or less) inter-set rest 
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durations result in optimal accumulation of metabolites, regardless of the exercise 

intensity (Kraemer et al., 1990). The influence that reduced rest interval duration had on 

blood lactate concentrations indicates that inter-set blood lactate clearance occurs when 

three-minute inter-set rest intervals are allowed, and that if metabolic stress is to be 

maximized, lower rest intervals should be prescribed (Kraemer et al., 1990; Schoenfeld, 

2016). This result also suggests that longer intra-set work durations may lead to a greater 

accumulation of metabolites (e.g. 10 repetitions or more per set).  

Training tempo. In addition to inter-set rest intervals, repetition duration, also 

referred to as training tempo, has been shown to influence the accumulation of 

metabolites resulting from exercise (Martins-Costa et al., 2016; Schoenfeld, 2016; 

Schoenfeld et al., 2015). The term training tempo refers to the total time duration 

required to perform the concentric, eccentric, and isometric components of each 

repetition of a specified movement (Schoenfeld, 2015; 2016). Training tempo is generally 

communicated in either a three- or four-digit expression (Pereira et al., 2016, Schoenfeld, 

2016), where each digit represents the time duration, measured in seconds, required to 

perform a portion of the specified movement. The first digit represents the concentric 

duration, the second represents the isometric pause between the concentric and eccentric 

actions, the third digit represents the duration of the eccentric action, and a fourth digit 

can be used to refer to the isometric pause between the eccentric and concentric actions.  

Although the physiological effects of training tempo manipulation are still under 

investigation, results from RT studies and the conclusions from a recent meta-analysis 

(Schoenfeld, 2015) support the hypothesis that short-to-moderate (.5 to 8 seconds) 
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training tempos will result in optimal hypertrophy with little differences occurring 

(Schoenfeld et al., 2015). However, repetitions lasting 10 seconds or longer in duration 

may have negative effects on hypertrophic adaptations, possibly resulting from decreased 

muscular activation during exercise (Keogh, Wilson, & Weatherby, 1999; Schuenke et 

al., 2012; Schoenfeld, 2016). 

In addition to hypertrophic outcomes, researchers have investigated the effects of 

training tempo on the accumulation of lactate during exercise (Lacerda et al., 2016; 

Martins-Costa et al., 2016: Mazzetti, Douglass, Yocum, & Harber, 2007; Schoenfeld, 

2016). Lacerda and colleagues (2016), found that concentric and eccentric contractions 

lasting approximately 1.5 seconds each (1.5-0-1.5-0) resulted in greater blood lactate 

accumulation compared to a repetition duration of 6 seconds (3-0-3-0). An important 

consideration made by Lacerda and colleagues was the equalization of time under 

tension, and thus, work volume, between protocols. Conversely, Martins-Costa et al. 

(2016) observed a significantly greater blood lactate response following resistance 

exercise performed at a slower training tempo (2-0-4-0) compared to exercise performed 

at a faster tempo (2-0-2-0). Further support for longer duration repetitions was observed 

by Mazzetti and colleagues (2007), where slow (2-0-2-0) contractions resulted in 

significantly greater post-exercise blood lactate concentrations compared to repetitions 

which included an explosive concentric contraction (1-0-2-0).  

With the recent increased interest into EIMS as an effective hypertrophic 

mechanism, training variables, such as training tempo, may be important considerations 

for researchers when creating exercise procedures designed to study the physiological 
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effects of metabolite accumulation. A review of the presented findings suggests that, 

when attempting to maximize the accumulation of metabolites during and following RT, 

moderate, controlled (e.g. 2-0-2-0) training tempos will elicit a superior metabolic 

response compared to quick, explosive repetitions (1-0-1-0). 

Conclusions and Implications of Previous Research 

 Exercise-induced metabolic stress has been identified as a primary hypertrophic 

mechanism (Schoenfeld, 2010; 2013; 2016; Schoenfeld & Contreras, 2014), however, the 

benefits, best practices, and practical application potential of this physiological 

phenomenon remain unclear at this time. The observed and theorized benefits unique to 

the training-induced accumulation of metabolites warrants further investigation. 

Additionally, methods of inducing an optimal accumulation of metabolic by-products, 

involving the manipulation of various training variables; including work volume, rest 

intervals, and training tempo, should be examined and elucidated to assist future 

researchers seeking to investigate further the theorized benefits of EIMS (cellular 

swelling, elevated rate of MPS, down regulation of proteolysis, and enhanced release of 

anabolic hormones) (Schoenfeld, 2013; 2016; Schoenfeld & Contreras, 2014).  

  

  

 

  



57 

 

CHAPTER 3 

METHODS 

Participants 

All recruitment methods and experimental procedures were approved by the 

Institutional Review Board Committee of the University of Northern Iowa. 

Recreationally trained males were invited to participate in a resistance training study. 

Participant eligibility was contingent upon each individual being in generally good health 

and fitness, allowing them to safely engage in resistance exercise. The health and fitness 

status of each potential participant was assessed through the required completion of the 

Physical Activity Readiness Questionnaire (PAR-Q). Due to the musculoskeletal stress 

associated with RT, individuals were dismissed from the study if they indicated that they 

were currently experiencing any musculoskeletal injuries which would impair their 

ability to safely execute the barbell bicep curl exercise. All participating individuals were 

asked to complete a brief training history questionnaire. Individuals who indicated that 

they had consistently conducted RT (3 hours/wk) for at least six months prior to their 

orientation session were deemed recreationally trained and were eligible to participate in 

the investigation if they fulfilled all additional requirements. 

Prior to the start of the study, potential participants were asked to report the use of 

dietary supplements containing any form of creatine. The use of creatine supplements 

was included in the eligibility criteria as this ergogenic aid has been shown to 

significantly enhance an individual’s work capacity (Rawson & Volek, 2003; Volek et 

al., 1997). Potential subjects were dismissed if they indicated that they had supplemented 
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with creatine-based products within the past four weeks. Additionally, due to the 

demanding nature of the testing protocols, potential participants were dismissed from the 

proposed study if they were engaging in a calorically restricted or a carbohydrate-

restricted (ketogenic) diet.  

Instruments 

During all testing sessions, participants were asked to perform repetitions of the 

barbell bicep curl exercise utilizing a plate loaded EZ curling bar. Participants were asked 

if they were familiar with the exercise prior to completion of the orientation session. If a 

participant indicated that they were unfamiliar with the exercise, research personnel 

provided a demonstration. During all testing sessions, participants were fitted with an arm 

blaster (Celebrita MMA, USA), which was worn during the execution of all repetitions. 

The Parvo Medics TrueOne 2400 (Salt Lake City, UT) was used to monitor and record 

participant metabolic data during all trials. All whole-body blood lactate measurements 

were made using the Lactate Plus Meter (Nova Biomedical, Waltham, MA) using the 

Lactate Plus Test Strips (Nova Biomedical, Waltham, MA).  

Procedures 

Orientation Session 

All participants attended an initial 30-minute orientation session individually. 

During the orientation session, participants were first asked if they had any additional 

questions about the objectives, procedures, or future implications of the current study. 

Participants then read and signed an informed consent document.  
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After the informed consent was completed, participants then completed a training 

history questionnaire, which was used to identify that each participant had a minimum 

training history of six-months of consistent RT. After completing the training history 

questionnaire, participants were asked if they were familiar with the barbell bicep curl 

exercise. Individuals who indicated that they had minimal or no experience with the 

exercise were given a demonstration provided by research personnel. Next, each 

participant completed a body composition assessment using the InBody 770 bioelectrical 

impedance analyzer (InBodyUSA, Cerritos, CA). During the body composition 

assessment, the height of each participant was self-reported and documented. 

 Following the completion of the body composition assessment, a 1RM for the 

barbell bicep curl exercise was determined for each participant following guidelines 

established by the National Strength and Conditioning Association (NSCA) (Haff & 

Triplett, 2015). An attempted 1RM test for the bicep curl exercise was considered 

successful when a participant was able to perform a single repetition of the exercise 

through the full range of motion described by researchers while maintaining contact 

between their upper back and posterior hips with the wall located immediately behind 

them. Attempts began at a starting load of 38.6 kilograms and the load was increased or 

decreased as necessary based on participant exertion level. When attempting to establish 

a 1RM, participants were allowed to rest for 60 seconds between attempts.  

Participants were given five minutes of rest following the 1RM testing procedure. 

After the five-minute recovery period, participants were asked to perform three sets of 

maximal repetitions of the barbell curl exercise at approximately 50% of their 1RM. The 
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purpose of these three sets of exercise was to allow participants to become familiarized 

with the procedures and equipment which were to be used during each testing session. 

Participants were allowed 60-second rest periods between each set of exercise. During 

the execution of the three familiarization sets, participants were instructed to follow the 

pacing of a metronome to ensure that each concentric and eccentric phase of exercise 

lasted two seconds in duration.  

The range of motion for the standing barbell curl exercise began with the 

participant’s elbow joints fully extended and ended when the barbell was returned to the 

starting position. The end range of motion for the concentric phase of each repetition was 

identified when the elbow joint reached maximum flexion. Throughout the duration of 

each set of repetitions, each participant’s upper back and posterior hips remained in 

contact with the wall located immediately posterior. Each set of exercise was concluded 

when each participant could no longer complete a repetition through the prescribed range 

of motion, or when any part of the participant’s back or hips lost contact with the surface 

of the posterior wall.  

Experimental Procedures 

Testing sessions were conducted on three separate testing days. Seven days 

passed between the completion of the orientation session and the first testing session. A 

minimum recovery period of 72 hours was observed between each testing session to 

allow for complete recovery of the elbow flexor muscle group. Each testing session lasted 

approximately 30 minutes in duration. Participants reported to each testing session 

individually. Upon arrival at the testing site, participants completed a 48-hour recall 
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questionnaire which was used to assess muscular soreness of the elbow flexors during the 

previous 48 hours, all biceps training performed during the previous 48 hours, and 

nutritional intake during the previous 48 hours.  

Following the completion of the 48-hour recall questionnaire, participants 

immediately began a general warm up protocol. During the general warm up protocol, 

participants first biked at 70 revolutions per minute (rpm) for five minutes on a cycle 

ergometer working against a frictional resistance of 2 kiloponds (kp). To complete the 

warm up protocol, participants next performed a series of upper body dynamic exercises 

consisting of 20 repetitions of a chest opening exercise and 20 repetitions of both forward 

and backward arm circles.  

After completing the general warm up protocol, participants were then fitted with 

the arm blaster equipment and connected to the Parvo Medics TrueOne 2400 metabolic 

measurement system. Participants were then instructed to stand with their back and hips 

in contact with the posterior wall for a three-minute baseline period. Approximately five 

minutes in total were allowed to elapse between the completion of the warm up protocol 

and the beginning of the first set of exercise. 

Training intensity was randomly assigned to each participant during the three-

minute baseline period immediately prior to the start of the testing procedure for each of 

three trials (Test1, Test2 and Test3). The three training intensities tested included 30%, 

60%, and 90% 1RM. After the completion of the three-minute baseline period, 

participants were instructed to performed three sets of the barbell curl exercise until they 

reached technical failure. Researchers monitored each repetition to ensure that the 
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eccentric and concentric phase of each repetition followed the pacing of a metronome set 

at 60 bpm. Participants were instructed to allow two beats of the metronome to occur 

during both the eccentric and concentric phases of the movement. All repetitions 

completed were performed through a full range of motion, identical to the range of 

motion performed during the initial strength test and familiarization sets conducted 

during the orientation session. All inter-set rest intervals were 60 seconds in duration. All 

loads lifted were rounded to the nearest 2.27 kg. 

Metabolic Metrics 

 RER, VCO2, and VO2 were monitored at 15 second intervals during each testing 

session using the Parvo Medics TrueOne 2400 metabolic measurement system. Specific 

time points were noted during each session, including baseline, post set 1 (Post1), post set 

2 (Post2), post set 3 (Post3), five minutes post exercise (Post5), and at 15 minutes post 

exercise (Post15), and were used for data retrieval following the completion of all testing 

sessions. 

Blood Lactate 

All blood samples were collected via finger prick of each participant’s non-

dominant index finger. Pre-exercise blood samples were taken immediately prior to each 

trial (Pre). Following each testing procedure, blood samples were collected immediately 

after the completion of the third and final set of repetitions (Post). Additional samples 

were collected at five minutes (Post5) and 15 minutes post-exercise (Post15). 
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Volume Load (VL) 

 All repetitions performed by each participant during each set of exercise were 

recorded by study personnel. This data, along with the loads lifted by each participant 

during each respective trial were used to calculate the total VL completed by each 

individual during each trial. Range of motion displacement for participants was not 

measured as the quantity of volume load performed was not compared amongst 

individuals. Total VL was the product of S (number of sets performed) x R (repetitions 

performed) x L (load lifted). 

Statistical Analysis 

 Participant performance during each session was recorded by study personnel in 

Microsoft Excel. Upon completion of all trials, participant data was entered into SPSS 

statistical analysis software (IBM). All data were analyzed utilizing a two-way (condition 

x time) ANOVA, in which each participant’s biological, metabolic, and performance 

metrics (blood lactate, average VO2, average VCO2, average RER, and VL) were 

evaluated based on time and condition. When a significant interaction was observed, an 

effect size between the two variables was calculated based on criteria proposed by Rhea 

(2004) for adjusting effect size (ES) based on participant training status (Turner et al., 

2015). Presented effect sizes for recreationally trained individuals are delineated as 

follows: small (.35 - .80), moderate (.8 – 1.49), and large (> 1.5). All results are presented 

as mean ± standard deviation. 
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CHAPTER 4 

RESULTS 

Participant Descriptive Statistics 

Recreationally trained male weight lifters volunteered to participate in this RT 

study. Two participants withdrew from the study following the completion of the 

orientation session, leaving a sample size of 11. The participants ranged in age from 18 to 

21 (19.5 ± 1.2) years of age. Participant mean height, weight, and body fat percent were 

71.1in. ± 2.1, 80.1kg ± 9, and 13% ± 4.1, respectively. All participants successfully 

completed each of the three trials. 

Blood Lactate 

 There were no significant differences observed in the blood lactate response when 

evaluated by time and condition, F (6, 120) = .529, p = > .05. Measured lactate values are 

reflected in Table 1. Blood lactate by time and condition is reflected in Figure 1. 

 

Table 1 Blood Lactate by Time and Condition 

Blood Lactate (mmol) 

Condition Pre Post 5-min Post 15-min Post 

30 3.74 ± 1.14 7.19 ± 2.7 6.05 ± 1.87 3.95 ± 1.41 

60 5.35 ± 3.33 7.06 ± 2.85 6.41 ± 1.91 4.45 ± 2.09 

90 4.55 ± 3.64 6.31 ± 3.98 4.42 ± 2.18 3.27 ± 2.16 
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Figure 1 Blood Lactate by Time and Condition 

.  

 

Metabolic Metrics 

RER 

There were statistically significant interactions between the effects of condition 

and time on RER, F (8, 150) = 3.314, p = .002. Statistically significant differences were 

observed in RER between Post1 and Post2, favoring the 30% condition over the 60% (ES 

= 1.05, p = .026) and the 90% condition (ES = 1.79 , p < .001), and the 60% condition 

over the 90% condition (ES = .87, p = .016). RER values were also significant between 

Post2 and Post3 favoring the 30% condition over the 90% (ES = .99, p = .031) and the 

60% condition over the 90% (ES = 1.11, p = .015). Observed RER values were similar 

during the 30% and 60% conditions at all time points other than the period between Post1 

and Post2. Measured values for RER by time and condition are listed in Table 2. RER 

values by time and condition are presented in Figure 2. 
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Table 2 RER by Time and Condition 

RER 

Con. Baseline Set 1-2 Set 2-3 

Set 3 - 5-min 

Post 5-min - 15-min Post 

30 0.99 ± 0.11 1.11 ± 0.08* 1.04 ± 0.07^ 1.05 ± 0.08 0.89 ± 0.05 

60 1.05 ± 0.13 1.02 ± 0.1*# 1.06 ± 0.07# 1.1 ± 0.07 0.96 ± 0.08 

90 1.06 ± 0.14 0.92 ± 0.13*# 0.95 ± 0.11^# 1.03 ± 0.12 0.91 ± 0.09 

Note. * denotes significant difference (p < 0.05) between 30%, 60%, and 90% conditions, # denotes 

significant difference between 60% and 90% conditions, and ^ denotes significant differences between 

30% and 90% 

 

Figure 2 RER by Time and Condition 
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Recorded values for participant VO2 are listed in Table 3, and VO2 is presented by time 

and condition in Figure 3. 

 

Table 3 VO2 by Time and Condition 

VO2 (ml*kg*min-1) 

Con. Baseline Set 1-2 Set 2-3 Set 3 - 5-min Post 5-min - 15-min Post 

30 4.13 ± 1.93 11.25 ± 2.59 11.6 ± 2.54 7.56 ± 1.79 4.64 ± 1.56 

60 4.35 ± 1.7 10.04 ± 3.31 11.85 ± 3 7.29 ± 2.06 4.19 ± 1.63 

90 4.66 ± 1.03 11.2 ± 2.31 14.02 ± 3.22 8.42 ± 1.34 4.63 ± 0.57 

 

Figure 3 VO2 by Time and Condition 
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VCO2 

 There were no statistically significant interactions observed between the effects of 

acute VL and time on participant VCO2 during any trials, F (8, 150) = 1.209, p = .298. 

Measured VCO2 values are presented in Table 4. VCO2 values by time and condition are 

depicted in Figure 4. 

 

Table 4 VCO2 by Time and Condition 

VCO2 (ml*kg*min-1) 

Con. Baseline Set 1-2 Set 2-3 

Set 3 - 5-min 

Post 5-min - 15-min Post  

30 4.16 ± 2.09 12.43 ± 3.24 11.99 ± 2.8 7.69 ± 1.73 4.05 ± 1.31  

60 4.61 ± 1.8 10.27 ± 3.57 12.31 ± 3.06 7.79 ± 2.21 4.02 ± 1.65  

90 5 ± 1.52 10.04 ± 1.79 13.33 ± 3.41 8.5 ± 1.88 4.2 ± 0.69  

 

Figure 4 VCO2 by Time and Condition 

 

 

0

2

4

6

8

10

12

14

16

Baseline Set 1-2 Set 2-3 Set 3 - 5-min Post 5-min - 15-min
Post

A
ve

ra
ge

 V
C

O
2

 (
m

l*
kg

*m
in

-1
)

Time

VCO2 by Time and Condition

30

60

90



69 

 

Volume Load 

Statistically significant interactions were observed between the effects of 

condition and time on non-accumulated VL, F (6, 120) = 10.221, p < .001. VL was 

significantly greater Post1 during the 30% condition compared to both the 60% (ES = 

1.46, p < .001) and 90% conditions (ES = 2.61, p < .001). VL was also significantly 

greater Post1 during the 60% condition compared to the 90% (ES = 2.11, p = .004). 

Significant interactions were also observed Post2 favoring the 30% condition over the 

90% (ES = 2.17, p = .011). No significant effects were observed in VL between 

conditions Post3.  

In addition to inter-set (non-accumulated) differences in VL, there were 

statistically significant interactions between the effects of condition and time on 

accumulated VL. The VL accumulated Post2 was significantly greater following the 30% 

condition compared to both the 60% (ES = 1.43, p = < .001) and 90% (ES = 2.59, p = < 

.001) conditions. The accumulated VL Post2 was also significantly greater following the 

60% (ES = 2.33, p < .001) compared to the 90% condition. The total VL accumulated 

Post3 significantly favored the 30% condition over the 60% (ES = 1.49, p < .001) and 

90% (ES = 2.69, p < .001) conditions. Additionally, the 60% condition resulted in 

significantly greater accumulated VL Post3 when compared to the 90% condition (ES = 

2.17, p < .001). Recorded VL values by time and condition are presented in Table 5, and 

VL by condition and time is depicted in Figure 5. 
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Table 5 Volume Load by Time and Condition  

Volume Load (reps x load in kg) 

Con. Post1 Post2 Post3 Total (Post2) Total (Post3) 

30 556.99 ± 214.08* 250.32 ± 87.95^ 184.82 ± 58.31 807.31 ± 290.5* 992.13 ± 328.27* 

60 315.45 ± 95.45* 174.55 ± 39.43# 126.06 ± 31.12 490 ± 120.78*# 616.06 ± 140.78* 

90 147.34 ± 59.59* 102.06 ± 39.55#^ 70.88 ± 40.17 249.39 ± 93.56*# 320.28 ± 131.39* 

Note. * denotes significant difference (p < 0.05) between 30%, 60%, and 90% conditions, # denotes 

significant difference between 60% and 90% conditions, and ^ denotes significant difference between 

30% and 90%  

 

Figure 5 Volume Load by Time and Condition 
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CHAPTER 5 

DISCUSSION 

 Recent literature has presented compelling evidence supporting the prominent 

roles of three primary hypertrophic mechanisms: mechanical tension, EIMD, and EIMS 

(Schoenfeld, 2010; 2012; 2016). However, the extent to which each mechanism 

contributes towards the pursuit of acute and chronic protein accretion remains unknown. 

This is largely due to the methodological difficulties associated with isolating the 

hypertrophic mechanisms from one another making it difficult to observe the singular net 

anabolic effects of each mechanism.  

 The EIMS response is most often evaluated by assessing the extent of lactate 

accumulation during and following exercise (Tesch et al., 1982; Shanely et al., 2014). In 

vitro (Tsukamoto et al., 2018; Willkomm et al., 2014) and in vivo (Tsukamoto et al., 

2018) studies recently investigated the anabolic effects of lactate in the absence of both 

mechanical stimulation and muscular damage. These investigations have demonstrated 

that lactate accumulation alone is a viable mechanism for facilitating the hypertrophic 

process and justifies an increased demand for RT studies focusing on the exercise-

associated accumulation of metabolites. 

 In the present study, the blood lactate response was not observed to differ 

significantly between conditions at any time point. However, a possible point of 

contention with these results is the fact that baseline lactate values measured considerably 

higher than values expected when at rest. This observation is likely the result of the 

general dynamic warm up procedure that was completed by participants approximately 
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five minutes prior to the baseline measurements. The elevated initial lactate 

measurements must be noted as they influenced the statistical analysis for this metric and 

all potential findings. 

Although it has been well established that increased training volume is associated 

with increased muscular growth (Radaelli et al., 2015; Schoenfeld, 2016; Wernbom et al., 

2007), the lack of significant findings in lactate accumulation between conditions and 

time, in the presence of significant differences in accumulated VL, suggest that lactate 

accumulation alone may not be a predominant factor responsible for the significantly 

greater hypertrophy observed following high volume training regimens. These findings 

also suggest that the exercise-associated accumulation of lactate may not be as closely 

related to training volume as previous evidence has suggested (MacDougall et al., 1999; 

Schoenfeld, 2013; 2016).  

 RT exercise performed for moderate durations significantly increases the 

breakdown of ATP and demands an enhanced rate of ATP resynthesis for the activity to 

be sustainable for any duration greater than approximately 15 seconds (Green et al., 

1983; Rodrigues et al., 2010; Schoenfeld, 2016). Due to the ATP requirements of such 

activity, RT is heavily reliant on anaerobic glycolysis (Schoenfeld, 2013; 2016). 

Although ATP is resynthesized predominantly via anaerobic respiration during RT, 

efforts to resynthesize ATP via aerobic pathways continue in tandem with anaerobic 

fueling strategies (Kenney, Wilmore, & Costill, 2008). To facilitate these aerobic efforts, 

ventilation and oxygen consumption are increased during exercise. In addition to elevated 

VO2 during RT, VCO2 is also elevated, as CO2 is one of the end products of aerobic 
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respiration (Kenney et al., 2008). However, observed values of VO2 and VCO2 were 

insignificant at all time points across all conditions. These results suggest that low-load, 

moderate-load, and high-load RT may be equally, insignificantly challenging on aerobic 

energy systems. Similarly, the insignificant lactate responses observed at all time points 

across all conditions suggests that each condition challenged the anaerobic energy 

systems to a similar, insignificant extent. However, as with observations made in baseline 

blood lactate measurements, VO2 and VCO2 baseline measurements were observed to be 

substantially greater than expected resting values. This observation was likely heavily 

influenced by the performance of a general dynamic warm up approximately five minutes 

prior to the collection of baseline measurements. Elevated initial measurements likely 

influenced the results of the statistical analyses performed for both VO2 and VCO2 and 

may have influenced any findings regarding these two metrics. 

VO2 and VCO2 are used to calculate RER, a metabolic marker often used to 

assess the contribution of energy pathways in fueling activity (Kenney et al., 2008). RER 

was found to be significantly greater between Post1 and Post2 favoring the 30% 

condition over the 60% and the 90% conditions. Significant observations were also made 

between Post2 and Post3, where the 30% and 60% conditions were favored over the 90% 

condition. However, 30% and 60% 1RM RT resulted in similar RER values at all 

additional time points after Post2. The fact that RER was significant while VO2 and 

VCO2 were not suggests that the relationship between these two values changed 

significantly during exercise, even though the metrics themselves did not.   
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The significant difference in RER values observed in the absence of significant 

blood lactate differences across time and conditions suggests that RER may be a better 

indicator of total accumulated metabolic stress than blood lactate. Three primary 

metabolic by products are believed to accumulate with exercise, contributing to the 

development of metabolic stress and muscular growth via several physiological pathways 

(cellular swelling, elevated rate of MPS, and enhanced release of anabolic hormones) 

(Schoenfeld; 2013; 2016; Takarada, Nakamura, et al., 2000; Takarada, Takazawa, et al.,  

2000). These three metabolites include lactate, H+, and Pi (Beaver et al., 1986: 

Schoenfeld, 2013; 2016). RER, a valid marker of anaerobic metabolism (Kenney et al., 

2008; Myers & Ashley, 1997), may better reflect the accumulation of all three primary 

metabolites compared to measures of blood lactate alone. 

RER was significantly greater during the 30% condition between Post1 and Post 2 

compared to the 60% condition during the same period. However, RER did not differ 

significantly between the two conditions at any other time point. These results suggest 

that, during progressive sets of RT, 60% 1RM will produce a similar metabolic response 

compared with lower intensities (30%). This finding has important implications when 

evaluating the presence of each hypertrophic mechanism and in determining the total 

potential effectiveness of RT in promoting muscular growth. 

However, similar to the other metabolic metrics observed in this study, baseline 

RER values were observed to be much greater than expected resting values. This is most 

likely a result of the general dynamic warm up procedure which was completed by 

participants approximately five minutes prior to the baseline measurements. Elevated 
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initial RER values may have influenced the results of the statistical analysis performed on 

this metric and may have influenced any findings regarding this metric. 

Although the 30% condition resulted in significantly greater total accumulated 

VL, the effectiveness of this mechanical stimulation of muscle fibers may be less 

significant than that provided by the accumulated VL which resulted from moderate 

intensity RT (60%). Considering previous theory which suggests that approximately 60 to 

65% 1RM is a threshold intensity for inducing muscular growth (Schoenfeld, 2010; 2013; 

2016) and previous evidence which has demonstrated enhanced recruitment of type II 

fibers at this intensity, it is logical that greater mechanical stimulation of muscle fibers 

may be possible when training with moderate loads (60 - 65%), despite achieving a lower 

total accumulated VL when compared with low-load training. Thus, moderate intensity 

RT may be superior to low-load training in that similar metabolic responses are observed 

following multiple sets of RT and moderate intensities possess greater potential for 

elevated mechanical tension and fiber recruitment. The substantial presence of two 

hypertrophic mechanisms simultaneously indicates that moderate intensity RT may carry 

greater potential for muscular growth compared to low and high intensity RT. 

Conclusions and Recommendations for Future Research 

 The present study has demonstrated that RER may be a promising indicator of 

metabolic accumulation, while direct measures of whole blood lactate may underestimate 

the total exercise-induced accumulation of metabolic stress. A potentially accurate, non-

invasive measure of metabolic stress would be highly beneficial to the research 

community as invasive techniques currently used to measure metabolic stress can be 
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disruptive to experimental procedures and pose a mild risk to participant health and 

comfort. 

 The findings of the present study support the use of moderate intensity loads (≥ 

60% 1RM) during RT focused on optimizing muscular growth. Moderate intensity RT 

has induced similar metabolic stress compared to low intensity loads when multiple sets 

of exercise are performed. It is believed that moderate intensities result in greater 

mechanical stimulation of muscle fibers, via the mTOR facilitated anabolic pathway 

(Schoenfeld, 2010; 2016), despite resulting in significantly less accumulated VL when 

compared to low load RT. Individuals capable of training at moderate intensities should 

do so if the addition of lean mass is a primary goal of their training program. 

 An important consideration with the experimental protocols used in this study is 

the inclusion of a general dynamic warm up protocol prior to the collection of baseline 

measurements. Initial VO2, VCO2, RER, and blood lactate measurements observed 

during the baseline period were substantially greater than values expected when at rest. 

The decision to include a general warm up protocol was made to promote participant 

safety during testing sessions. However, elevating metabolic markers prior to conducting 

each testing session may have compromised the statistical results of these metrics and 

may have neglected or generated erroneous findings.  

Performing the warm up procedure after completing the baseline observations 

would have undoubtedly yielded baseline values which would have been much closer to 

true resting values, however, what is unknown is how much time should be allowed to 

pass between the completion of the warm up procedure and the start of the exercise 
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protocol. If participants were not given adequate recovery time between the completion 

of the warm up and the start of the exercise protocol being tested, then results would still 

be influenced by the elevated metrics which were affected by the warm up procedure. If 

participants were given too much recovery time between the warm up and start of the 

testing protocol, then the warm up would lose its effectiveness at minimizing the risk of 

injury during exercise as participants may cool down during this time. Although 

performing a warm up protocol prior to exercise is practically realistic and promotes 

participant safety, this practice and its timing in experimental procedures may be 

potential detrimental to the accuracy of statistical analyses and experiment findings. 

Future RT studies should be conducted which evaluate more moderate intensities 

(65-75% 1RM) compared to low loads (<50% 1RM) to observe metabolic accumulation 

and accumulated VL. Additionally, future studies are needed to validate RER as an 

effective, non-invasive marker of accumulated metabolic stress. Future RT studies should 

also consider performing any warm up procedures after completing any baseline 

observations for key dependent variables. Finally, due to the well documented variation 

in exercise-associated lactate accumulation observed between trained and untrained 

individuals (Pierce et al., 1993; Stone et al., 1987), additional long-term RT studies with 

larger sample sizes exclusive to trained and well-trained individuals are needed to 

validate the proposed acute and chronic anabolic effects of the exercise-associated 

accumulation of metabolites, and to identify the precise myogenic pathways by which 

EIMS facilitates muscular growth. 
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